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Abstract

The biochemical and physical factors controlling protein expression level and solubility in vivo remain incompletely
characterized. To gain insight into the primary sequence features influencing these outcomes, we performed
statistical analyses of results from the high-throughput protein-production pipeline of the Northeast Structural
Genomics Consortium. Proteins expressed in E. coli and consistently purified were scored independently for
expression and solubility levels. These parameters nonetheless show a very strong positive correlation. We used
logistic regressions to determine whether they are systematically influenced by fractional amino acid composition
or several bulk sequence parameters including hydrophobicity, sidechain entropy, electrostatic charge, and
predicted backbone disorder. Decreasing hydrophobicity correlates with higher expression and solubility levels, but
this correlation apparently derives solely from the beneficial effect of three charged amino acids, at least for
bacterial proteins. In fact, the three most hydrophobic residues showed very different correlations with solubility
level. Leu showed the strongest negative correlation among amino acids, while lle showed a slightly positive
correlation in most data segments. Several other amino acids also had unexpected effects. Notably, Arg correlated
with decreased expression and, most surprisingly, solubility of bacterial proteins, an effect only partially attributable
to rare codons. However, rare codons did significantly reduce expression despite use of a codon-enhanced strain.
Additional analyses suggest that positively but not negatively charged amino acids may reduce translation
efficiency in E. coli irrespective of codon usage. While some observed effects may reflect indirect evolutionary
correlations, others may reflect basic physicochemical phenomena. We used these results to construct and validate
predictors of expression and solubility levels and overall protein usability, and we propose new strategies to be
explored for engineering improved protein expression and solubility.

Background progress, the physical mechanisms underlying this varia-

Overexpression of recombinant proteins is a central
method in contemporary biochemistry, structural biol-
ogy, and biotechnology. Unfortunately, it is often a sig-
nificant experimental challenge [1,2]. Many recombinant
proteins express at low levels or not at all, and those
proteins which express at high levels but in an insoluble
form cannot be used without applying technically chal-
lenging refolding procedures [3]. Despite significant
experimental [1,2,4-7] and computational [8-12]
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bility remain poorly understood. The goal of the work
reported in this paper is to increase understanding of
the sequence parameters and physicochemical mechan-
isms influencing protein overexpression and solubility in
vivo.

Most existing experimental techniques to improve
yield of soluble protein focus on optimization of factors
extrinsic to the target protein itself. Experimental tech-
niques for increasing expression have been reviewed
elsewhere [1,2]; they include co-expression of fusion
partners (including MBP [13] and smt [14] ), codon
enhancement [15], or optimization [16,17] (including
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removal of 5 RNA secondary structure [18]), and the
use of protease-deficient strains [19]. Techniques that
have been developed specifically to improve solubility of
recombinant proteins include chaperone co-expression
[3], fusion to solubility-enhancing tags or protein
domains [13,4], heat shock [20] or expression at lower
temperature [1], expression in a different growth med-
ium [1], reduction of protein expression level (e.g., by
using less inducer or a weaker promoter [21]), directed
evolution [22,23], and rational mutagenesis [24]. Of
these, only the last relies on understanding the proper-
ties of the protein itself, rather than on modifying an
external factor. Intrinsic biophysical features influencing
protein expression and solubility in vivo have received
comparatively little systematic study, at least in part
because of the complexity of the physicochemical pro-
cesses determining outcome.

Net protein expression level in vivo reflects the bal-
ance of a series of different biochemical processes,
including gene transcription rate, mRNA stability,
mRNA translation rate into protein, and protein degra-
dation rate. Different amino acids could potentially
influence all of these steps, in some cases directly and in
others indirectly. Important indirect effects include
amino-acid influence on the local and global conforma-
tional stability of the protein, which can impact degrada-
tion rate [25], and codon usage, which can impact
protein translation efficiency [26] as well as mRNA tran-
scription rate via the GC content of the gene [27]. In
vivo solubility level is similarly influenced by a number
of different physicochemical factors, including the fold-
ing efficiency [7,17,23] and thermodynamic stability
[6,25,28,29] of the protein, its tendency to form non-
native aggregates including amyloid structures [30-32],
and its inherent thermodynamic solubility (i.e., the che-
mical potential of the dissolved state compared to
native-state aggregates including crystalline phases and
amorphous precipitates) [6,28,29,33]. Different amino
acids could also potentially influence all of these physi-
cal processes contributing to the recovery of protein in
soluble form after expression in vivo. Indirect evolution-
ary effects, in which two different physicochemical prop-
erties are simultaneously selected via the same
evolutionary process, represent an additional complica-
tion in extracting mechanistic inferences from correla-
tions in a large-scale biological dataset. Therefore, the
influence of bulk amino-acid properties on protein
expression and solubility in vivo in a large-scale experi-
mental study could have many possible physicochemical
explanations, which would require critical evaluation via
other experimental approaches. Nonetheless, due to the
absence of conceptual bias, datamining large-scale in
vivo expression results offers a unique opportunity to
detect biologically significant effects that have evaded
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characterization via hypothesis-driven experimentation
[34].

Many previous studies have focused on understanding
sequence correlations with specific physicochemical
properties of proteins. While a previous study of puri-
fied NESG proteins indicated no correlation between
mean hydrophobicity and folding stability of a set of
predominantly mesophilic eubacterial proteins [35], stu-
dies of sequence bias in hyperthermophilic proteins sug-
gest an enhanced content of both hydrophobic and
charged amino acids in hyperstable proteins at the
expense of polar amino acids [36,37], with the charged
amino acids tending to participate in cooperative salt-
bridging networks [37-40]. Analysis of the predicted
proteomes from the genomes of a large set of bacteria
show that the fractional content of a specific set of resi-
dues (IVYWREL) is a good predictor of the optimal
growth rate of the organism, which was interpreted to
reflect the influence of these amino acids in enhancing
protein stability [27]. However, this mechanistic infer-
ence was not tested experimentally, so other explana-
tions for the observed correlations have not been
excluded (e.g., explanations related to metabolic con-
straints on hyperthermophiles or the altered thermody-
namic properties of water at elevated temperatures).

Other studies have examined sequence correlations
with protein solubility using widely varying experimental
approaches and solubility assays. One study examined
the yield of soluble protein after expressing all E. coli
proteins individually in a cell-free, in vitro translation
system [34]. A bimodal distribution was observed, with
higher soluble yield being positively correlated with
lower isoelectric point and the prevalence of negatively
charged amino acids but not correlated with the preva-
lence of hydrophobic amino acids. Another study exam-
ined the influence of the 20 amino acids at a single
surface-exposed site on the thermodynamic solubility of
RNase Sa at high ammonium sulfate concentration [6].
Asp, Glu, and Ser were observed to have a more favor-
able influence than other hydrophilic amino acids at this
position [6]. Finally, an analysis of cytosolic proteins in
E. coli showed a positive correlation between mRNA
abundance and the in vitro solubility of the correspond-
ing protein, both of which were positively correlated
with several parameters including hydrophilicity, low
GC content, and a-helical content [30,31]. This analysis,
however, was based on a small set of proteins forming
amyloid-like insoluble structures, and the observed cor-
relations could be influenced by the specific stereochem-
istry of the ordered aggregates formed by these proteins.

One widely applied approach to improving expression
and solubility is to avoid difficult proteins in favor of
homologous targets [41]. Therefore, the ability to iden-
tify primary sequence factors that impact these factors is
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technologically valuable. Previous predictive work has
studied the effect of codon usage [5] and RNA second-
ary structure [5,42] on protein expression. Some predic-
tive analyses of solubility have examined a small set of
global sequence characteristics based on published data-
sets of relatively small size [8,9]. Others have used proxy
criteria from larger datasets rather than direct experi-
mental observations [10,11,43] (e.g., not progressing past
the “expressed” stage in TargetDB [44], which tracks the
progress of structural genomics projects). These analyses
have employed sophisticated computational methods
that can provide reasonable predictors of outcome but
that make it difficult to extract qualitative trends provid-
ing conceptual insight into the sequence determinants of
protein expression and solubility.

Despite the many valuable insights and tools that have
emerged from these previous studies, substantial uncer-
tainty remains concerning the biochemical and physical
factors that influence protein expression and solubility
level in vivo. To deepen understanding of these factors,
we analyzed results from the protein production pipeline
of the NESG, where over 19,000 protein constructs have
been taken through the same cloning and E. coli expres-
sion pipeline [45]. These protein constructs were scored
independently for their expression level and the fraction
of the expressed protein recovered in soluble form. Uni-
form processing of thousands of protein expression
experiments should remove methodological variances
that could impact outcome, as well as stochastic varia-
tions in individual experiments [46], enabling significant
trends to be observed more clearly. Earlier studies of the
Northeast Structural Genomics Consortium (NESG -
http://www.nesg.org) pipeline have elucidated some
determinants of experimental performance [43,35]. Our
statistical analyses of a much larger number of observa-
tions from this high-throughput experimental pipeline
provide new insight into the amino acid sequence prop-
erties that influence protein expression and solubility
level in vivo and reveal a number of surprising sequence
correlations that have evaded characterization via tradi-
tional mechanistic experimentation. Some of these cor-
relations are likely to reflect the biochemical and
physical properties of the individual amino acids, sug-
gesting new approaches to be evaluated for their efficacy
in engineering improved protein expression results.

Results

Characteristics of the high-throughput protein-expression
dataset

Comprehensive statistical analyses were performed on
results obtained from a set of 9,644 target proteins
taken through the uniform protein expression and puri-
fication pipeline of the NESG between 2001 and mid-
2008 (82% eubacterial, 12% archaebacterial, 6% human,
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and 0.3% from other eukaryotes). A single construct was
evaluated for each. Some targets were individual
domains taken from multi-domain proteins. Targets
with large low-complexity regions, predicted transmem-
brane o-helices, or predicted signal peptides were
excluded from this set, although a small fraction are
predicted to contain the latter features by some analysis
methods (less than 8% of the total - see Methods). Pro-
teins carrying short hexa-histidine tags were expressed
overnight at 18°C in E. coli BL21A(DE3) cells from a
T7-polymerase-based pET vector [45]. The expression
strains also harbored the pMGK plasmid overespressing
three tRNAs cognate to rare codons for Arg and Ile
residues [45]. A subset of 7,733 of these proteins (desig-
nated the “Analysis Dataset”) was used for model devel-
opment and initial regressions, while the remaining
1,911 proteins (designated the “Test Dataset”) were set
aside for use solely in model validation.

Based on small-scale expression trials conducted on at
least two clones, each construct was assigned integer
scores from 0 to 5 independently for its expression level
(E), based on the total amount of protein observed on a
Coomassie-Blue-stained SDS-PAGE gel, and for the pro-
portion of the expressed protein recovered in the solu-
ble fraction (solubility score or S), based on its yield in
the supernatant after low-speed centrifugation to
remove insoluble material. An S value of 0 indicates no
recovery in the supernatant, while a value of 5 indicates
~100% recovery; intermediate values are roughly linearly
proportional to the level of yield between these two
extremes. S values were not recorded for proteins with
E = 0. The solubility score S reflects a combination of
physical factors including in vivo folding efficiency
[47,48], thermodynamic stability [6,23,49], and aggrega-
tion propensity [30,31,50] in addition to the thermody-
namic solubility of the natively folded protein.
Nonetheless, it provides both a practical measure of suc-
cess in producing useful protein preparations and a tool
for generating hypotheses concerning physicochemical
factors influencing soluble protein expression in vivo in
E. coli. Our explicit experimental observations provide
more detail than datasets previously used to develop
predictors of protein solubility [8,10,11], which have seg-
regated proteins based on binary criteria (e.g., the
absence or presence of inclusion bodies).

Some data analyses were performed based on the
value of E*S, i.e., the product of the expression level and
solubility score. During the relevant time period, the
operational requirement for protein scale-up for purifi-
cation by the NESG was having E*S > 11. Therefore, an
E*S product above this threshold represents a criterion
for practical utility or “usability.”

Experiments on multiple clones for each construct
show equivalently good reproducibility of both E and S
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values in our large-scale experimental dataset (Addi-
tional file 1, Figure S1A). Furthermore, the E and S
values observed in subsequent large-scale expression/
purification procedures closely parallels those observed
in small-scale expression trials on the same clone (Addi-
tional file 1, Figure S1B). These observations indicate
that our large-scale experimental dataset is not compro-
mised by problems related to stochastic variation in
expression [46].

For the ~25% of protein constructs for which different
E or S values were observed for different clones, the
maximum observed values were used for statistical ana-
lyses of the primary dataset examined in this paper.
This approach was motivated by the expectation that
most experimental errors in the protein-production
pipeline should lower E or S value. It is justified by ana-
lyses of alternative datasets employing a series of differ-
ent approaches to deal with discrepancies in observed E
and S values, as presented in more detail below.

Additional file 1, Figure S2 shows that there is little
correlation between E or S and thermal stability (T,)
for 75 purified bacterial proteins randomly selected
from our expression dataset. While this analysis was
limited to proteins with E*S > 11 (because proteins fall-
ing below this threshold were not purified), it suggests
that thermal stability is not a major determinant of
expression level or solubility score for proteins
expressed in soluble form at a moderate or high level.

Strong correlation between expression level and
solubility score

Although all combinations of E and S values were
observed in our large-scale dataset, the majority of pro-
teins scored at the extremes of both score ranges
(roughly 65% in each case) (Figure 1). Higher E corre-
lates very strongly with higher S in this dataset. Exclud-
ing proteins showing no expression, E predicted S more
significantly (p = 4.5 x 10°®7) than any of the sequence
parameters evaluated below. These results are consistent
with those obtained from high-throughput experiments
examining expression of all E. coli proteins in an E. coli
cell-free in vitro translation system [34]. A reanalysis
comparing the solubility levels observed in this study to
the in vivo expression levels assessed using quantitative
mass spectrometry [51] also shows an equivalent trend
with higher expression in vivo correlating with higher
soluble yield in vitro (G. Boel, L. Brown, and J.F. Hunt,
unpublished results).

The strong positive correlation between E and S compli-
cates efforts to interpret the influence of sequence para-
meters on expression level vs. solubility score when the
parameters have a consistent effect on both. However,
parameters showing a substantially stronger effect on one
of the two scores are more likely to act mechanistically on
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Figure 1 Distribution of proteins by expression level and
solubility score. The principal dataset analyzed in this paper
contains 9,644 target proteins that went through small-scale E. coli
expression trials in the NESG protein-production pipeline. It was
randomly divided into an Analysis Dataset used for regression
analyses and model development (7,733 proteins) and a Test
Dataset used for model validation (the remaining 1,911 proteins).
Each protein was assigned independent integer values from 0-5 for
its expression level (E) and solubility score (S), as assessed by visual
inspection of a Coomasie-Blue-stained SDS-PAGE gel containing the
total cell extract and corresponding soluble fraction. (A) Distribution
of E scores in the combined Analysis and Test Datasets. (B)
Distribution of S scores for proteins with non-zero expression in the
combined Datasets. (C) Bubble-plot showing the relative number of
proteins in bins segregated simultaneously by both expression level
and solubility score. The area of each bubble is proportional to the
number of proteins with that exact combination of E and S values.
Therefore, each column in the plot represents all proteins with the
corresponding E score, while each row represents all proteins with
the corresponding S score. For example, the upper-right-most
bubble shows that 1,653 constructs had a S score of 5 among the
3,957 proteins with an E score of 5, which are represented by the
total area of all bubbles in the right-most column. In this dataset,
3,880 proteins were considered useable for purification and
biophysical characterization, as defined by having E*S > 11.
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one of the related biochemical processes (i.e., translation/
degradation rate vs. solubility/aggregation), while para-
meters showing opposite effects on the two scores can be
interpreted to have opposing effects on these processes.

Logistic regression to evaluate dependence on primary
sequence parameters

Because E and S values are non-continuous, ordinary
least-squares regressions are not appropriate to evaluate
their relationship to sequence parameters. Therefore, we
used logistic regressions to determine which sequence
parameters significantly predict expression level, solubi-
lity score, or usability. Logistic regression determines
whether there is a significant relationship between a
continuous independent variable (e.g., fractional amino
acid content) and a categorical output variable [52]. The
method involves calculating the odds-ratio for the differ-
ent outcomes for defined ranges of the continuous vari-
able and then performing a linear regression against the
logarithm of the odds-ratio [52,53]. As opposed to a
standard logistic regression, which applies this analysis
to a single binary outcome, an ordinal logistic regression
applies a similar analysis to the probability of being at
or below each successive value of the categorical output
variable (e.g., E or S) [52]. The sequence parameters
(continuous independent variables) that we analyzed
using ordinal logistic regression included the fractional
content of each amino acid and twelve aggregate para-
meters, including protein length, GRAVY (the GRand
AVerage of hydropathY [54]), mean side chain entropy
(SCE) for all residues and those predicted to be surface-
exposed by PHD/PROF, isoelectric point, and six addi-
tional electrostatic charge variables (Table 1).

Figure 2 shows the relationship between two such
sequence parameters and the probability of a protein
construct exhibiting the lowest (0) or highest (5) E or S
values, while Additional file 1, Figure S3 shows the full
E and S score distributions for three different sequence
parameters exhibiting significant correlations. Lys and
Arg would be expected (based on physicochemical simi-
larity) to have equivalent effects on both E and S, as
would Leu and Ile. However, the fractional content of
Lys correlates positively with S, while the fractional con-
tent of Arg shows a small negative correlation with S.
Moreover, the fractional content of Ile shows positive
correlations with both E and S, while the fractional con-
tent of Leu has little impact on E but shows a strong
negative correlation with S. (Note that the analyses pre-
sented in Figure 2 were limited to the fraction of each
amino acid encoded by common codons to exclude any
potential influence from rare codons, as addressed in
more depth below; however, most graphs and analyses
presented in this paper include all synonymous codons
for any given amino acid.)
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Ordinal logistic regressions were used to assess the
statistical significance of the relationship between each
of the primary sequence parameters enumerated above
and the experimental outcomes observed in our large-
scale dataset. Figure 3 shows that many of these
sequence parameters have a significant influence on out-
come. The values plotted in Figure 3 are the negative of
the base-10 logarithm of the p-value for the ordinal
logistic regression multiplied by the sign of the slope of
this regression (i.e., +1), so positive correlations yield
positive values and negative correlations yield negative
values on this graph. These values scale monotonically
with the “predictive value” of the parameter, which is
defined as the product of its regression slope (which
measures the magnitude of its influence) and its stan-
dard deviation (which normalizes for its range in the
dataset).

Six alternative datasets were analyzed using equivalent
statistical methods in order to explore the validity and
the generality of our results (Figure 4). We compared
the results for our principal Analysis Dataset to those
for a much larger dataset including expression results
from 19,746 constructs for 13,342 targets. This dataset
contains a wider range of organisms, including a higher
proportion of human proteins (3,350 constructs for
1,534 targets), in addition to having multiple constructs
for many targets. Furthermore, rather than taking the
maximum E and S scores as was done for the Analysis
Dataset, statistical analyses of the larger dataset
employed scores set to the average of the E and S values
observed in all individual expression trials, leading to
use of the label “Blind Average” for this dataset in Fig-
ure 4. Analyses were also conducted on a culled version
of the Blind Average dataset (labeled “Blind Av.; No
Memb./Secr.”) that excluded all constructs from pro-
teins that were predicted by a wider variety of methods
to have either a transmembrane o-helix or an N-term-
inal signal peptide targeting the protein for secretion
out of the cytosoplasm. A culled version of the Analysis
Dataset including only eubacterial targets was also ana-
lyzed with the E and S values set to those from the
expression trial with the maximum E*S value (labeled
“Max ExS”). This last dataset was further culled to
remove multiple constructs by selecting the single con-
struct with the highest E*S score, yielding the dataset
labeled “Max ExS; 1 Construct,” which shows that
removing multiple constructs of the same target has lit-
tle effect on the significant results. An additional highly
conservative dataset was analyzed in which the Max ExS
Dataset was culled to contain only predicted cytosolic
soluble proteins from eubacterial organisms and only
constructs giving identical values of E and S in all
experimental replicates (labeled “100% Consistent Cull;
No Memb./Secr.”). One final dataset was analyzed
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Table 1 Sequence parameter names and formulae®
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Variable Name

Parameter

Parameter Formula

x (eg., a, 0

Fractional content of residue x

(count of residue x)/(chain length)

xb (e.g., cb, db)

predicted buried amino acid fraction

(number of residue x predicted buried by PHD/PROF)/(chain length)

xe (eg., de, ee)

predicted exposed amino acid fraction

(number of residue x predicted exposed by PHD/PROF)/(chain length)

gravy GRAVY/hydrophobicity mean residue hydrophobicity

sce sidechain entropy mean sidechain entropy of all residues

esce predicted exposed sidechain entropy mean sidechain entropy of residues predicted exposed by PHD/PROF
numcharge number of charged residues R+K+D+E

netcharge net charge R+K-D-E

absnetcharge absolute net charge R+K-D-E

fracnumcharge fraction of charged residues (R + D + D + E)/chain length

fracnetcharge fractional net charge (R + K- D - B)/(chain length)

fracabsnetcharge fractional absolute net charge |R + K - D - E/(chain length)

diso fraction predicted disordered residues (number of amino acids predicted disordered by DISOPRED2)/(chain length)
length chain length number of residues

pi isoelectric point ExPASy pl (http:/ca.expasy.org/tools/pi_tool.html)

T Sequence parameters analyzed for correlation with expression, solubility, and usability. Sixty amino acid variables were considered, including the fractional
content of each amino acid as well as this content divided into separate parameters for residues predicted by the program PHD/PROF to be solvent-exposed vs.
buried. Twelve compound variables were also considered, including hydrophobicity (GRAVY) [32], mean side-chain entropy (SCE) [39] for all residues or only
those predicted by PHD/PROF [61,80,81] to be surface-exposed, several electrostatic charge variables, the fraction of residues predicted by the program

DISOPRED2 [78] to be disordered, isoelectric point, and construct chain length.

containing only constructs from human proteins in the
Max ExS dataset (labeled “Human”). In general, trends
of the same sign and similar magnitude were observed
in all of these alternative datasets.

The only notable exception is the Human Dataset.
The Human Dataset displays a limited number of signif-
icant differences relative to correlations with expression
level and a larger number of significant differences rela-
tive to correlations with solubility score (Figure 4Bvs.
Figure 3). (Specific discrepancies are described below
when relevant to noteworthy trends.) Many different
factors could contribute to the broad differences
observed in our high-throughput E. coli expression trials
on predicted human proteins compared to those on pre-
dicted bacterial proteins. First, there are greater ambigu-
ities concerning proper identification of open-reading
frames in higher eukaryotes [55], due to the presence of
introns and other factors, so a larger proportion of the
constructs could have improperly defined domain
boundaries. Second, this dataset has a much higher pro-
portion of alternative constructs for the same target pro-
tein or domain (an average of 2.4 constructs per target
vs. 1.4-1.5 in the other alternative datasets and 1.0 per
target in the Analysis Dataset). Again, this reflects a
higher probability of constructs having improperly
defined domain boundaries. Furthermore, the protein
translation apparatus [56-58] and the chaperone envir-
onment [59,60] both have substantial differences in
eukaryotic vs. bacterial cells, which could also contribute
to problems with the folding of the human proteins

targets in vivo in E. coli. Several quality-control mea-
sures suggest that such problems are indeed more wide-
spread for the human proteins compared to the
bacterial proteins evaluated by NESG. Figure 5A shows
that human protein constructs yield monodisperse pro-
tein stocks about half as frequently as eubacterial pro-
tein constructs (29% in the Human Dataset vs. 60% in
the 100% Consistent Dataset), while they yield aggre-
gated stocks approximately three times more frequently
(20% in the Human Dataset vs. 6% in the 100% Consis-
tent Dataset). The rate at which human proteins yielded
crystal structures in the NESG pipeline was only one-
half to one-third of that in the other datasets analyzed
in this paper (Figure 5B). The substantially different
solubility-score trends in the Human Dataset compared
to the others could be influenced by a greater preva-
lence of proteins that have not achieved a properly
folded native conformation (i.e., that are in a partially or
fully unfolded or misfolded state).

Electrostatic charge has a dominant effect on expression
and solubility

Among the evaluated sequence parameters, the most
salient effects observed in the Analysis Dataset are from
parameters related to electrostatic charge (Figure 3).
Considering individual amino acids, the fractional con-
tent of three of the charged amino acids, Glu, Asp, and
Lys, strongly correlates with higher expression level and
solubility score. Notably, these three residues show an
influence of similar magnitude on solubility score, while
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Figure 2 Influence of four amino acids on expression level and solubility score. Proteins in the Analysis Dataset presented in Figure 1 were
divided into 10 bins based on their fractional content of a single amino acid. The plots show the fractions of proteins within each bin scoring
either 0 (no expression or completely insoluble) or 5 (very high expression or solubility); the error bars represent 95% confidence intervals based
on counting statistics. Plots are shown for lysine (panels A and B), arginine (panels C and D), leucine (panels E and F), and isoleucine (panels G
and H). The analyses presented in these data panels, but none of the others in the main text, were performed exclusively on the fraction of
each amino encoded by common codons in order to factor-out the influence of rare codons (which is explained below).
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Figure 3 Statistical significance of primary sequence parameters in predicting outcome. Ordinal logistic regressions were performed to
evaluate whether sequence parameters have a significant influence on the expression levels and solubility scores observed for proteins in the
Analysis Dataset (Figure 1). Calculations based on E employed a training set of 7,733 proteins, while those based on S employed the 6,046
proteins in this set with E >0. The ordinate, labeled “Signed -log(p)’, shows the negative of the base-10 logarithm of the p-value for the
corresponding regression multiplied by the sign of that regression’s slope. This scales monotonically with the parameter’s “predictive value” (the
product of the parameter’s regression slope and standard deviation in the dataset). Parameters are arranged by the strength of their influence
on E value after segregation of fractional amino acid content from compound sequence parameters. The dotted line shows a Bonferroni-
corrected significance threshold of 0.0015. The naively counterintuitive negative correlations between net electrostatic charge and both E and S
derive from two reinforcing sources. Negatively charged residues have a beneficial/positive influence on both E and S (Additional file 1, Figure
S4), which makes the regression slopes negative due to the negative mathematical value of their charge. In the case of E, this effect is reinforced
by the deleterious influence of positively charged residues, which makes the regression slope negative for this mathematically positive
parameter. The deleterious influence of isoelectric point (pl) on E and S, which has been noted previously [82], is attributable to similar causes

(Figure 1 & Additional file 1, Figure S4).

the influence of Lys on expression level is substantially
weaker than that of Asp and Glu. (Possible explanations
for the systematically different influence of negatively vs.
positively charged residues on expression level are
addressed in the Discussion section below.) Curiously,
the fractional content of Arg shows opposite effects to
that of Lys, i.e., significant negative correlations with
both expression level and solubility score. While Arg
does show a positive correlation with solubility score for
the human protein dataset, it still shows only approxi-
mately a quarter of the magnitude of the positive corre-
lation shown by Lys (Figure 4B), despite the similar
electrostatic charge and sidechain entropy of these resi-
dues. Despite the contrary effects of arginine, the
length-normalized total charge (fraction of Asp + Glu +
Arg + Lys, fracnumcharge) is the strongest positive pre-
dictor of solubility score among the sequence para-
meters evaluated, while the length-normalized absolute
value of net charge (fracabsnetcharge) is the second
strongest positive predictor among aggregate sequence
parameters (right side of Figure 3).

The negative effect of Arg on solubility score in the
Analysis Dataset (Figure 3) was surprising and merited
further exploration. Arg is encoded in part by rare
codons, which are known to impede expression in some
cases [16]. Given the strong positive correlation between

E and S in our dataset, we hypothesized that such rare
codon effects might indirectly cause the negative corre-
lation between Arg content and solubility score. When
the fractional content of Arg is split into residues
encoded by rare codons vs. common codons, Arg resi-
dues encoded by the common codons have no signifi-
cant effect on solubility score. This result contrasts
strongly with that observed for Lys, which has a signifi-
cant positive effect (Additional file 1, Figure S5B).
Therefore, we conclude that Arg itself is likely to have
some physicochemical or evolutionarily correlated prop-
erty that reduces solubility score for bacterial proteins,
despite its positive charge. Arg residues encoded by
both rare and common codons have negative effects on
expression (Additional file 1, Figure S5A), although the
effect of Arg encoded by rare codons is much more
deleterious despite expression in a strain overexpressing
the cognate rare tRNAs. These results suggest that Arg
exerts a deleterious influence on the expression level of
bacterial proteins via both amino acid properties and
codon effects.

Rare codon effects

The significantly different influence of Arg residues
encoded by rare vs. common codons led us to similarly
dissect the influence of rare vs. common codons for Ile,
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Figure 4 Statistical analyses of alternative datasets. Single ordinal logistic regressions equivalent to those performed on the Analysis Dataset
in Figure 3 were performed on six alternative datasets. Predictive values (defined in Figure 3) are shown for expression level (panel A) and
solubility score (panel B). The dotted lines indicate the Bonferroni-corrected threshold for significance in the Analysis Dataset (because
significance depends on dataset size). The “Blind Average Dataset” contains all NESG protein constructs from the second phase of the Protein
Structure Initiative, including multiple constructs for many targets, with scores averaged from all replicate expression trials (19,746 constructs for
13,342 targets). The "Max ExS Dataset” contains exclusively eubacterial proteins from the Analysis Dataset, with the E and S scores taken from the
expression trial with the highest E*S value (7,113 constructs for 5,218 targets). The “Max ExS; 1 Construct Dataset” include exactly one construct
per target in the Max ExS Dataset (5,218 constructs and targets); the construct with the highest value of E*S was retained for targets with
multiple constructs. The “Blind Av,; No Memb./Secr. Dataset” contains proteins from the Blind Average Dataset excluding those predicted by a
wider range of metrics to have a transmembrane a-helix or an N-terminal signal peptide or lipopeptide directing secretion out of the cytoplasm
(16,888 constructs for 11,698 targets). The “100% Consistent; No Memb./Secr. Dataset” includes only eubacterial proteins with identical E and S
scores in all small-scale expression trials and not predicted by any algorithm to have a transmembrane a-helix, N-terminal signal peptide, or
lipopeptide (3,633 constructs for 2,583 targets). The “Human Dataset” includes all human proteins from the Blind Average Dataset (3,350
constructs for 1,534 targets). Results from the Analysis Dataset (Figure 3) are shown for comparison.
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Figure 5 Biophysical properties of proteins in the different datasets. The distributions of the hydrodynamic statuses of the concentrated
protein stock solutions (panel A) and the crystal structure solution rates (panel B) are shown for the Analysis Dataset, the Max ExS Dataset, the
100% Consistent Dataset, and the Human Dataset. Hydrodynamic status was determined as previously described [35]; in brief, a thawed aliquot
of the final stock solution from each construct was subject to analytical gel-filtration chromatography monitored by in-line static light-scattering
and refractive-index detectors. Non-aggregated samples with less than 85% of the protein in a single hydrodynamic species were classified as
polydisperse. Crystal structure solution rate is scored based on PDB deposition via the NESG structure-determination pipeline and does not
count constructs yielding diffracting crystals unless they were of sufficient quality to support deposition of the structure. Structure solution rates
are shown both as fraction of all targets and as fraction of all constructs.

Leu, and Pro, the other amino acids known to be
encoded in part by expression-reducing rare codons. We
observe negative effects on both expression level and
solubility score for Leu and Pro. However, surprisingly,
Ile showed no significant effect on expression level and
a small but significant positive effect on solubility score.
To determine whether codon usage influences these
results, paired logistic regressions were performed in
which residues encoded by rare and common codons
were examined independently but simultaneously for
each amino acid. Additional file 1, Figure S5 shows
these results alongside the comparable single logistic
regression results for the total amino acid fractions. In
these analyses, the effects observed for residues encoded
by common codons should reflect most directly the phy-
sicochemical and correlated evolutionary effects of the
amino acid itself, while the effects observed for residues
encoded by rare codons may also include contributions
from inefficient decoding by the cognate tRNAs. Rare
codons for Arg, Ile, and Pro all significantly reduce
expression (Additional file 1, Figure S5A), and those for
Arg and Pro similarly reduce solubility score (Additional
file 1, Figure S5B). Ile residues encoded by common
codons have a strongly beneficial effect on expression,
perhaps via their beneficial influence on solubility score,
but the opposing effects of Ile residues encoded by rare

vs. common codons results in an overall neutral effect
of this residue on expression level. The Arg and Ile resi-
dues encoded by rare codons seem to impede expression
despite overexpression of the cognate tRNAs. These
observations indicate that the translation-impeding
effects of the rare codons for Arg and Ile likely repre-
sent intrinsic properties of the interaction of these
codons with the translation apparatus rather than
merely a consequence of low expression levels of the
cognate tRNAs.

Hydrophobicity is not a dominant determinant of
expression or solubility score

Several of the results reported above were unexpected.
First, Arg, the most hydrophilic amino acid on the Kyte-
Doolittle scale, was significantly negatively correlated
with solubility score. Second, Ile, the most hydrophobic
amino acid on this scale, had a significant positive corre-
lation with solubility score. These observations indicate
that the influence of side-chain hydrophobicity on solu-
bility is not straightforward. Figure 6 plots the Kyte-
Doolitle hydrophobicity of each amino acid against its
predictive value for E and S in our Analysis Dataset.
Although mean hydrophobicity exhibits a negative cor-
relation with both expression level and solubility score
(Figure 3), this effect comes primarily from the positive
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Figure 6 Predictive values for E and S plotted against amino
acid hydrophobicity. The abscissa gives the hydrophobicity of
each amino acid on the Kyte-Doolittle scale. The ordinate gives the
predictive values for the fractional content of each amino acid as
calculated from single logistic regressions performed against E or S
values in the Analysis Dataset. (See the legend to Figure 4 for a
definition of the predictive value)) The error bars show 95%
confidence. Predictive values for total amino fractions are shown as
solid squares. For the four amino acids commonly considered to be
encoded in part by rare codons, the predictive values are also
shown for the corresponding amino acid fractions encoded by
either common codons (triangles pointing up) or rare codons
(triangles pointing down); see Additional file 1, Figure S4 and the
associated text in the Results section for an explanation of this
segregation procedure. Amino acid hydrophobicity is not
significantly correlated with amino acid predictive value for

expression (p = 0.098) or solubility (p = 0.23).

influence of the charged residues Asp, Glu, and Lys
(Figure 6). The predictive values of the other amino
acids are not correlated with hydrophobicity. Of the
seven residues with positive hydrophobicity, four have
negative effects on solubility, while three have positive
effects, including Val and Ile (which are the most hydro-
phobic residues on some scales). For other amino acids,
the effects are uncorrelated with their hydrophobicity.
Ala and Gly both have negative effects on expression,
which might result from enhanced proteolysis of Ala/
Gly-rich sequences, but much weaker and generally neu-
tral effects on solubility score. (While Gly shows a bor-
derline significant effect on solubility score in the
Analysis Dataset used to generate Figure 6 — Gly does
not show a consistent effect on solubility score in the
broader collection of datasets analyzed in Figure 4,
while the clearly significant effects in Figure 6 are all
generally consistent in those alternative datasets.) Ser
and His both have significant negative impacts on solu-
bility score, but not on expression. Notably, some amino
acids, such as Ile and Leu, have different effects despite
similar physicochemical properties, including hydropho-
bicity (as shown on the abscissa in Figure 6). These
observations indicate that the stereochemistry of the
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amino acids makes a strong contribution to their influ-
ence on protein solubility score in a large-scale expres-
sion dataset.

Additional file 1, Figure S6 presents an equivalent ana-
lysis of the relationship between amino acid hydrophobi-
city and its influence on expression level and solubility
score in our Human Dataset. This analysis shows a
stronger and more consistent negative correlation
between hydrophobicity and solubility score. Notably,
the physicochemically similar amino acid pairs that have
divergent influences on the Analysis Dataset have con-
sistent influences on the Human Dataset. Arg and Lys
both have a positive correlation with solubility score,
although the correlation with Arg is substantially weaker
than that of Lys (Figure 4B). Similarly, Leu and Ile both
show negative correlations, although the correlation
with Ile is weaker than that with Leu. Therefore, the
influence of amino acid stereochemistry appears to be
reduced in this dataset, which shows trends substantially
more consistent with the bulk physicochemical proper-
ties of the amino acids. However, a substantially smaller
proportion of proteins in this dataset are likely to be in
their properly folded native conformations, as discussed
above (Figure 5), so the observed trends may be influ-
enced by non-native and unfolded protein conforma-
tions, where effects are more likely to reflect the bulk
physicochemical properties rather than the specific
stereochemical features of the amino acids. Further
investigations will be required to establish the explana-
tion for the divergent trends observed for human vs.
bacterial proteins in our high-throughput E. coli expres-
sion experiments (Figures 4 &6, and Additional file 1,
Figure S6).

Solvent-exposure predictions usefully segregate amino
acid parameters

We hypothesized that the predicted surface-exposure of
individual amino acid should significantly influence their
effect on solubility score, while this parameter should
only have an indirect and therefore weaker influence on
expression level. Therefore, we divided the fractional
amino acid content by whether the amino acid was pre-
dicted by the program PhD/PROF [61] to be buried or
surface-exposed, and we ran the same set of ordinal and
binary logistic regressions on the divided fractional con-
tent of each amino acid. The results of these 72 logistic
regressions are shown in Tables S1 & S2. Because some
parameters are mathematically related and therefore
provide redundant signal (e.g., a = ab + ae), parameter
divisions were retained only if buried vs. surface-exposed
content have statistically significant effects with opposite
signs (Figure 7 & Additional file 1, Figure S8). This divi-
sion of amino acid content shows significant differences
for eight amino acids in predicting solubility score, but
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Figure 7 Segregation of amino acid parameters by predicted surface-exposure vs. burial. The fractional content of each amino acid was
divided according to the localization predicted by the program PHD-PROF. Ordinal logistic regressions were calculated between all sequence
parameters listed in Table 1 and E or S values in the Analysis Dataset as described above. Potentially redundant variables (e.g., a [total ala] = ae
[exposed ala] + ab [buried alal) were culled separately for expression and solubility as described in the Methods section. Signed -log(p) values
are shown for the parameters that showed a significant correlation with either expression or solubility after parameter culling, using a
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for only two amino acids in predicting expression level.
The positive influence on solubility score of Asp, Glu,
and Lys, and to a lesser extent Asn, Met, and Thr, are
all derived from surface-exposed residues. Beyond sup-
porting the hypothesis that surface localization critically
mediates amino acid influences on solubility, this analy-
sis shows that our analytical approach can provide
further insight into differential effects on protein expres-
sion vs. solubility score, even though the two outcomes
are significantly correlated in the dataset.

Combining parameters to predict experimental outcome
In addition to gaining insight into the primary sequence
parameters influencing protein expression and solubility
in vivo, we sought to develop sequence-based predictors
of experimental outcome that could be used to enhance
the efficiency of protein-production efforts, especially in
high-throughout pipelines. Therefore, based on the sta-
tistical analyses reported above, we constructed
sequence-based predictors of protein expression level,
solubility score, and usability (i.e., of producing a usable
protein preparation with E*S > 11). Our software pro-
vides substantially more detailed predictions than pre-
vious models that report binary outcome probability (e.
g, low vs. high expression, or the presence vs. absence
of inclusion bodies). Our software is available online at
http://nmr.cabm.rutgers.edu:8080/PES/.

We used stepwise multiple regressions to create multi-
parameter models, starting with all significant parameters
and removing or re-introducing parameters individually
as they became statistically insignificant or regained sig-
nificance. Because some amino acids showed significantly

different effects in single regressions depending on their
predicted localization, as documented in the previous
section, the total fractional content of these amino acids
was divided into the predicted buried and surface-
exposed fractions. For example, multiple ordinal logistic
regressions were performed using the fractions of the
sequence composed of alanine residues predicted to be
buried (ab) and exposed (ab) as separate parameters
instead of the fraction composed of all alanine residues
combined (a). Additional file 1, Table S3 summarizes the
slope and significance of the parameters remaining after
completion of the culling process on all relevant vari-
ables; for comparison to the original set of significantly
predictive parameters, the parameters remaining in the
usability model are also shown in Figure 8.

In the combined usability metric, called pES for the
probability of Expressed and Soluble protein, positive
effects remain for exposed Gln, exposed Thr, absolute
net charge, and, by far the most significant, the fraction
of charged residues. Negative effects remain for Cys,
buried Phe, Trp, GRAVY, disorder, and, most signifi-
cant, Arg. Exposed SCE shifts from a positive effect in
single regression to a negative effect in the final multiple
regression. We hypothesize that SCE initially functions
as a proxy for Lys and Glu content; both have high SCE
and also carry net electrostatic charge, which improves
both solubility and usability. When the effect of electro-
static charge is included explicitly in the multiple logis-
tic regression model via the fracnumcharge parameter,
the influence of SCE on usability becomes negative, for
reasons for that require further study but that are likely
to be related to parameter interdependence.
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Figure 8 Performance of a multiparameter model predicting
protein usability. The model employs the significant sequence
parameters retained after stepwise multiple binary logistic
regression that also fulfill the Akaike Information Criterion (see
Methods section). The probability of yielding a protein with E*S >
11 is given by an equation of the form p = 1/(1+exp(-0)), with 6
being a linear combination of the significant sequence parameters.
This equation models the results in the Analysis Dataset set closely
up to a 65% probability of protein usability (p = 3.7 x 107", N =
7733) and performs similarly well on a Test Dataset comprising 1911
proteins chosen at random to be excluded from the Analysis
Dataset (p = 6.8 x 107° N = 1911, 0’ = 0.85*0 - 0.06). The graph
shows the performance of the model based on ten bins at equal
intervals of 0.1 in the variable 6. The squares show the fraction of
usable proteins in each bin, and the error bars represent 95%
confidence limits calculated based on counting statistics.

The pES metric models the results observed in the Ana-
lysis Dataset closely up to a 65% probability of producing
usable protein (p = 3.7 x 10!, N = 7733), and it predicts
the results in the corresponding Test Dataset nearly as
well (p = 6.8 x 10°, N = 1911) (Figure 8). Using a cutoff
of pES > 0.3, the yield of usable proteins could be
increased by 13% while keeping 80% of targets; a cutoff of
0.4 would increase yield by 29% while keeping 46% of tar-
gets, and a cutoff of 0.5 would increase yield by 45% while
keeping 20% of targets. We also developed a usability
metric that includes the rare codon effects shown in Addi-
tional file 1, Figure S5. This model (Additional file 1, Fig-
ure S9) describes the Analysis Dataset somewhat better (p
= 9.2 x 10'*) than the model based on amino acid
sequence without consideration of codon frequency infor-
mation, and it shows a similar improvement in predicting
results in the corresponding Test Dataset (p = 3.3 x 10™%).

We also developed separate predictive metrics for
expression level and solubility score using the same pro-
cess of stepwise multiple logistic regression, although
these models were constructed using ordinal instead of
binary logistic regressions. The slopes and parameters
retained in these regressions are reported in Additional
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file 1, Table S3. They perform very well in predicting the
distribution of outcome scores (0-5) observed in both the
Analysis Dataset and corresponding Test Dataset (Addi-
tional file 1, Figure S10). (Note that in all of our expression
and solubility datasets, the mean of the score distributions
tends to be near 3, even though this specific value is sel-
dom observed; therefore, ordinal prediction metrics must
be evaluated based on the distribution of scores for an
ensemble of proteins, as done in Additional file 1, Figure
S10, and not merely on the probability-weighted expecta-
tion value of the score for a single protein.)

Permissive vs. enhancing sequence parameters

To deepen understanding of the related mechanistic
effects, we examined the impact of individual parameters
more closely to determine whether some parameters
influenced outcomes at the low end of the score range (i.
e., no expression (E = 0) vs. any expression at all (E>0) —
“permissive” factors) or at the high end of the range (i.e.,
very high expression (E = 5) vs. lesser expression (E<5) —
“enhancing” factors). Many parameters have such dispa-
rate impacts (Additional file 1, Figure S11). Notably for
expression, parameters related to the factional content of
charged or hydrophobic residues are primarily permis-
sive, while net charge is primarily enhancing. Similar pat-
terns exist for solubility, but in this case most
significantly permissive factors were also significantly
enhancing. For more details, see the SI.

Opposing parameter influence on expression level and
solubility score vs. crystallizability

Previous studies noted that factors predicting crystalliz-
ability of expressed, soluble proteins were less effective in
predicting success in going from gene sequence to crys-
tallized protein [35]. This observation suggested that
some sequence parameters have opposing effects on
expression or solubility vs. crystallizability. The current
analyses unfortunately confirm this inference. Almost
every parameter that has significant positive influence on
usability has a negative influence on crystallizability
according to our previous published crystallization data-
mining studies [35], and vice versa (Figure 9). To some
extent, these observations are mechanistically tautologi-
cal because crystallization represents orderly precipita-
tion of a protein out of an aqueous solution. Nonetheless,
they highlight the difficulty inherent in attempting to use
single amino-acid substitutions to engineer improved
protein crystallization behavior, as noted in prior reports
of solubility problems encountered in the course of such
mutagenesis experiments [62].

These opposing effects of primary sequence para-
meters on expression/solubility vs. crystallizability are
reflected in the distribution of pES scores among struc-
tures deposited into the PDB by the NESG. Proteins
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Figure 9 Opposing influence of sequence parameters on
protein expression/solubility vs. crystallization propensity.
Predictive values for usability (ie, having E*S > 11) were calculated
using binary logistic regression against the Analysis Dataset, while
predictive values for the propensity to yield a crystal structure were
calculated using binary logistic regression against crystallization
results obtained from a subset of the same proteins in the NESG
pipeline, as previously reported [35]. Predictive values (defined in
the legend for Figure 4) are compared because they normalize for
the large difference in the sample sizes in the expression and
crystallization datasets (9,866 vs. 679 proteins), which prevents
comparison based on measures of statistical significance. Parameters
are shown if significant at the indicated Bonferroni-corrected p-
value thresholds in either analysis.

which yielded X-ray crystal structures had significantly
higher usability scores than the full set of targets evalu-
ated, but significantly lower scores than proteins yielding
NMR solution structures (Additional file 1, Figure S12).
The most likely explanation for these trends is that pro-
teins suitable for X-ray structure determination must
meet at least minimal expression and solubility require-
ments, and therefore tend to have somewhat higher
pES, but proteins that exhibit the exceptionally high
solubility required for NMR studies and have corre-
spondingly higher average pES are enriched in high-
entropy Glu and Lys residues, making them less likely
to crystallize successfully. In evaluating these trends, it
is important to note that proteins with E*S < 12 are
more difficult to produce in high yield and were there-
fore dropped from the NESG protein-production pipe-
line. The observed bias towards higher usability scores
may not be as strong outside of a high-throughput pipe-
line. Overall, selection of targets with medium-to-high
predicted usability scores would be expected to increase
the likelihood of producing proteins suitable for X-ray
crystal-structure determination, while selection of tar-
gets with very high usability scores would be expected
to increase the likelihood of producing proteins suitable
for NMR solution-structure determination.

Predicting NMR success
This last conclusion is reinforced by explicit efforts to
analyze the primary sequence correlates of successful

Page 14 of 20

NMR structure determination, which are detailed in the
SI. These studies led to the conclusion that the charac-
teristics necessary for obtaining expressed, soluble pro-
tein are the most important determinants of the
probability of obtaining an NMR structure solution
(Additional file 1, Figure S13). Therefore, the usability
predictor described above can also function as a predic-
tor of suitability for NMR structure determination.

Discussion

General considerations in interpreting observed
correlations

Care must be exercised in interpreting correlations
between sequence parameters and experimental observa-
tions in a large-scale biological dataset. While such cor-
relations could derive from a direct mechanistic effect of
the correlated sequence parameter, they could alterna-
tively derive from simultaneous evolutionary selection of
two different physical properties that do not have a
direct mechanistic relationship. Examples of such alter-
native hypotheses are presented when discussing specific
correlations below. In all such cases, additional analyses,
ideally both informatic and experimental, will be
required to determine the relative contributions of direct
vs. indirect mechanisms to the observed large-scale
correlations.

Strong correlation between expression level and
solubility score

One salient feature of our large-scale expression dataset
is a strong positive correlation between expression level
and solubility score (Figure 1 & Additional file 1, Figure
S14) for protein-coding genes from diverse phylogenetic
sources. A similarly strong positive correlation between
equivalent parameters was observed for endogenous E.
coli genes in a large-scale study of cell-free in vitro
translation [34], and a reanalysis of these data indicates
this correlation remains strong if the solubility results
from in vitro translation are compared to endogenous
protein expression levels in vivo in E. coli as determined
using quantitative mass spectrometry methods (G. Boel,
L. Brown, and J.F. Hunt, unpublished results). Further-
more, proteins whose mRNAs are expressed at a high
level in E. coli have been demonstrated to have a
reduced tendency to form amyloid aggregates [12].
Therefore, the strong correlation between E and S
observed in our large-scale dataset appears to be a con-
served feature of the expression of naturally evolved
genes, at least in E. coli.

One possible explanation for the strong positive corre-
lation between E and S would be an indirect evolution-
ary correlation between these parameters. Highly
expressed proteins, which are known to have more
strongly conserved amino acid sequences [63-65], may
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be constrained to have more robust folding and solubi-
lity properties because of their higher cellular concentra-
tion. In this case, the parameters influencing expression
level could be completely unrelated to the amino acid
sequence of the protein (e.g., mRNA structure and
codon usage), but its amino acid sequence could be
independently but simultaneously selected to promote
solubility.

Alternatively, there could be some kind of direct
mechanistic coupling between the processes influencing
protein expression and solubility. For example, aggrega-
tion of nascent proteins could inhibit their translation.
Additionally, aggregated proteins could be targeted pre-
ferentially for degradation, thereby reducing their steady-
state expression level. While such explanations are plau-
sible, many mutations that impair solubility do not
reduce expression [52], indicating that solubility does not
directly influence expression level in all cases. Another
possibility for mechanistic coupling is that more rapid
protein translation, which would tend to produce higher
steady-state expression levels, could promote more effi-
cient folding and thereby promote higher solubility for
some proteins. This possibility is supported by the obser-
vation of an enhanced content of more efficiently trans-
lated codons at buried and aggregation-prone sites in
proteins [66,67]. On the other hand, removal of transla-
tional pause sites from some proteins leads to impaired
folding and decreased solubility, presumably due to a
decrease in folding efficiency when translation is acceler-
ated [68]. Furthermore, an improved yield of soluble pro-
tein is frequently obtained by lowering the growth
temperature of E. coli, which slows protein translation,
and mutations that reduce ribosomal translation speed in
E. coli have been shown to improve the soluble yield of
some proteins [69]. However, such perturbations broadly
modulate the physiological state of the cell, and a tem-
perature change also modulates the physicochemical
properties of proteins and even water. Further investiga-
tion will be required to understand the mechanisms
underlying these seemingly divergent effects and whether
more rapid translation generally promotes or impedes
more efficient protein folding in vivo.

Therefore, many explanations are possible for the
strong positive correlation between protein expression
level and solubility score observed in our large-scale
dataset. Given the evidence that this correlation is a
general property of naturally evolved protein-coding
genes [12,34], at least when expressed in E. coli, eluci-
dating the source of this correlation should be an
important goal of future studies.

Influence of electrostatic charge on expression level
The fractional content of charged (acidic and basic)
amino acids is a dominant predictor of good protein
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solubility in all of the large-scale protein expression
datasets examined in this study (Figures 3 and 4B). Con-
sistent with the generally strong positive correlation
between expression level and solubility score observed
in these datasets (Figure 1 & Additional file 1, Figure
S14), Asp and Glu have a similarly strong positive corre-
lation with expression level (Figures 3 &4A). However,
Lys shows a much weaker positive correlation with
expression than Asp or Glu, despite its equivalently
strong positive correlation with solubility score, and Arg
shows a negative influence on expression, even when
coded by common codons (Additional file 1, Figure S5).
Given the strong correlation between expression level
and solubility score, and the statistical and likely
mechanistic dominance of charge on solubility, the sim-
plest explanation for these observations is that positively
charged residues reduce translation efficiency while
negatively charged residues do not. Such an effect could
derive from electrostatic attraction of the positively
charged amino acids to rRNA [70]. Indeed, one specific
Arg codon has been demonstrated to slow translation
[71]. However, alternative explanations cannot be ruled
out, including a differential influence of positive vs.
negative charges on protein degradation rates. Further
mechanistic study will be required to distinguish
between possible explanations.

Amino acid influence on protein solubility

Surprisingly, some amino acids with very similar physi-
cochemical properties (Lys vs. Arg and Leu vs. Ile/Val)
have divergent influences on solubility score in all of
our protein expression datasets except the Human Data-
set (Figures 3,4), which is likely to have a substantially
higher fraction of disordered or improperly folded pro-
teins (Figure 5). Furthermore, excluding the influence of
Asp, Glu, and Lys, there is no correlation between
hydrophobicity and influence on solubility score in our
primary Analysis Dataset, although there is in the
Human Dataset. The positive influence of some residues
on solubility score could potentially represent a substitu-
tion effect (e.g., Ile or Val being less deleterious than
Leu at positions constrained to be hydrophobic). How-
ever, even an effect of this kind is not readily rationa-
lized based on the bulk thermodynamic properties of
the individual amino acids. These observations suggest
that, for the large and phylogenetically diverse set of
bacterial proteins included in our large-scale expression
experiments, the stereochemical properties of the amino
acids significantly influence protein solubility during in
vivo expression in E. coli.

Solubility following expression in vivo could be
strongly influenced by the thermodynamic stability of
the protein construct, because unstable proteins often
have enhanced misfolding and aggregation propensity.
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While stability is expected to depend primarily on local
stereochemical interactions in the folded state of the
protein, previous work documenting sequence bias in
proteins from hyperthermophilic organisms has sug-
gested that the content of a specific set of amino acids
(IVYWREL - Ile, Val, Tyr, Trp, Arg, Glu, and Leu) may
be generally correlated with increased protein stability
[27]. However, the trends observed in the sequences of
hyperthermophilic proteins do not match those
observed in our analyses of solubility score. Fractional
content of Ile, Val, and Glu are correlated with higher
solubility score in our datasets (other than the Human
Dataset), while fractional content of Tyr, Trp, Arg, and
Leu are correlated with a lower solubility score. There-
fore, either the amino acids IVYWREL are not corre-
lated with higher protein stability at mesophilic
temperature or stability effects do not account for the
trends in solubility score observed in our datasets.

An alternative hypothesis is that the observed solubi-
lity-score correlations could reflect preferential partici-
pation of some amino acids in stable interprotein
interaction interfaces. In the absence of the physiological
binding partner, the exposure of such interfaces to solu-
tion might tend to drive aggregation. While such an
effect would still reflect a greater propensity for amino
acids with specific stereochemical properties to mediate
interprotein contacts, it is nonetheless important to
understand whether this propensity depends on being
present in an evolved interprotein interaction surface. In
this case, the statistical influence of the amino acid
could represent in part a surrogate for the presence of
unfulfilled interprotein interaction interfaces. Therefore,
we examined the relationship between the predictive
values for outcome in our Analysis Dataset and two
parameters related to the participation of each amino
acid in stable interprotein interaction interfaces in the
Protein Protein Data Bank (PDB), as identified by the
BIOMT [72] flag in crystal structures deposited in the
PDB (V. Naumov and J.F. Hunt, manuscript in prepara-
tion). The first of these parameters is the frequency of
the amino acid relative to all amino acids participating
in such interfaces (Additional file 1, Figure S7A), while
the second is the overrepresentation ratio for each
amino acid in such interfaces compared to an appropri-
ately surface-weighted distribution of the protein
sequences yielding the structures (Additional file 1, Fig-
ure S7B). Neither of these parameters shows a signifi-
cant correlation with the complete set of predictive
values observed in our Analysis Dataset. Therefore, par-
ticipation in stable interprotein interaction interfaces is
not a dominant determinant of amino acid influence on
expression level or solubility score in this dataset. How-
ever, some noteworthy points concerning the influence
of specific amino acids emerge from this analysis.
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Notably, Leu and Arg, which both show a dispropor-
tionately deleterious influence on solubility compared to
amino acids with similar bulk physicochemical proper-
ties, are the most frequent amino acids making contacts
in stable interprotein interaction interfaces (Additional
file 1, Figure S7A). This observation suggests that these
amino acids have an enhanced interaction potential due
to their stereochemical properties. In this context, con-
verting these amino acids to less interaction-prone resi-
dues with similar bulk physicochemical properties might
help reduce non-specific interprotein interaction and
aggregation (as discussed in more detail below.)

Arg is also the most strongly overrepresented amino
acid in stable interprotein interaction interfaces com-
pared a properly surface-weighted distribution of the
amino acid sequences yielding crystal structures in the
PDB (Additional file 1, Figure S7B). In comparison, the
other charged amino acids (Lys, Glu, and Asp), are all
slightly underrepresented in such interfaces. Therefore,
the surprisingly deleterious influence of Arg on solubi-
lity score and its divergent influence compared to Lys,
Glu, and Asp could reflect in part a surrogate effect
related to formation of stable interprotein complexes,
because sequences forming such interfaces should have
an enhanced content of Arg. However, the mechanistic
underpinning of this surrogate effect would be the
greater interaction propensity of Arg compared to the
other charged amino acids, perhaps due to the high H-
bonding potential of its guanidino group.

In contrast, the discrepancy between the influence of
Leu vs. Ile or Val on solubility score seems unlikely to
be attributable to such a surrogate effect and likely to
be directly attributable to its stereochemical properties.
While Leu is the most frequent amino acid in BIOMT
interfaces (Additional file 1, Figure S7A), it is also the
most abundant residue overall, and it is slightly depleted
in BIOMT interfaces compared to its frequency in an
appropriately surface-weighted amino acid distribution
(Additional file 1, Figure S7B). While Ile and Val are
slightly more depleted, the observation that Leu is
depleted from such interfaces makes its enrichment in a
protein sequence unlikely to be a surrogate for forma-
tion of stable interprotein interaction complexes. It is
possible that the stereochemical features of Leu, perhaps
its knob-like hydrophobic structure, give it a stronger
tendency to mediate non-specific interprotein interac-
tions compared to the residues with similar bulk physi-
cochemical properties, which could contribute to its
comparatively deleterious influence on protein solubility
in our large-scale expression datasets. The observation
that Leu is the most abundant residue in stable inter-
protein interaction interfaces (Additional file 1, Figure
S7A) establishes its strong tendency to mediate specific
interprotein interactions.
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Potential implications for protein expression and
engineering

The computational predictors we have developed for
expression and solubility score can increase the likeli-
hood of expressing high quantities of soluble proteins.
Target selection necessitates a tradeoff between a higher
rate of success with retained targets and discarding a
higher proportion of the initial set. Using our metric
with a reasonable cutoff of pES>0.4, we would expect a
29% increase in usable targets while discarding 54% of
the pool. This approach could prove useful for high-
throughput studies.

Our results also have implications relative to strategies
for engineering individual proteins to improve their
expression and solubility characteristics. They provide
statistical justification for adding Lys, Gln, and Glu resi-
dues and deleting disordered segments to improve yield
of soluble protein and suitability for NMR solution-struc-
ture determination, strategies that have been pioneered
in previous studies [6,7]. Our results also suggest new
approaches to be evaluated for their efficacy in increasing
the expression and solubility of individual proteins.

The more favorable influence of Ile and Val on solubi-
lity score compared to the very deleterious influence of
Leu suggests that substituting Leu with Ile or Val at
some protein positions might produce an improved
yield of soluble protein. Given the uncertain mechanistic
origin of the statistical trends in our expression datasets,
it is unclear whether or how generally such substitutions
will have beneficial effects. However, engineering experi-
ments of this kind represent one approach to clarifying
the physicochemical effects accounting for the observed
large-scale correlations. Similar logic suggests that some
Arg-to-Lys substitutions might also improve yield of
soluble protein. However, outcome in this case is even
more uncertain because the deleterious statistical influ-
ence of Arg on solubility score could represent a surro-
gate effect reflecting the influence of unbound
interprotein interaction surfaces, in which case single
amino acid substitutions are less likely to solve related
solubility problems. Additional informatics analyses and
biochemical experimentation will be required to eluci-
date the mechanisms underlying the correlations
observed in our large-scale experimental dataset and
whether any of them can be applied productively to
engineering improved protein expression results.

Materials and methods

Target selection and classification

For the Analysis Dataset, 9644 protein target sequences
expressed between 2001 and June 2008 were selected
from the SPINE database [73]. Protein sequences were
randomly assigned at a 4:1 ratio (7733:1911) to the Ana-
lysis Dataset or the corresponding Test Dataset. Proteins
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with transmembrane a-helices predicted by TMMHMM
[74] (i.e., >20% low-complexity sequence) were excluded
from the pipeline, and therefore were not included in our
analyses. A small fraction of constructs that entered the
pipeline have predicted lipoprotein signal sequences (239,
~2.5%) [75] that were not identified at the time of target
selection. Another small fraction have predicted signal
sequences (622, ~6.4%) [76], but many of these were
expressed in soluble form following export to the peri-
plasm and cleavage of the signal peptide (some of which
gave crystal structures). Because the expression and solu-
bility-score distributions for these proteins were very simi-
lar to that of the entire dataset (Additional file 1, Figure
S14), they were retained in the Analysis Dataset. However,
to explore the possible influence of such proteins and
other factors related to protein source and data processing
on overall trends, the basic sequence analyses were
repeated on six alternative datasets, as described in the
Results section and shown in Figure 4.

Protein expression & purification

Proteins were expressed, purified, and analyzed as pre-
viously described [35,45], including assessment of protein
aggregation state using analytical gel-filtration chromato-
graphy with static light-scattering and refractive index
detectors. Small-scale expression scores were used for all
analyses (other than the comparison of these results with
those from corresponding large-scale purification experi-
ments as shown in Additional file 1, Figure S1B).

Datamining variables

Datamining analyses were conducted on native sequences
with tags removed. Three outcome variables were consid-
ered: independent 0-5 integer scores for expression (E)
and solubility (S), as evaluated by Coomassie-stained gel
electrophoresis, and the binary variable of usability,
defined as having a product of expression and solubility
scores greater than 11 (i.e., 12 or higher given that E and
S are both constrained to be integers). Input variables
included the frequency of each amino acid, either total or
predicted by the program PHD/PROF [61] to be buried
or exposed (60 variables in total), and the compound
sequence metrics of charge, pl, grand average of hydro-
phobicity (GRAVY), Monte Carlo sidechain entropy
(SCE), fraction of residues predicted to be disordered
(DISOPRED), and the length of the construct sequence.
The number and fraction of charged residues were also
evaluated, calculated as signed or unsigned sums of the
frequencies of appropriate combinations of Arg, Lys, Glu,
and Asp residues considered as both whole and fractional
values. Isoelectric point was calculated at ExPASy (http://
ca.expasy.org/tools/pi_toolhtml). GRAVY was calculated
using the Kyte-Doolittle hydropathy parameters [54]. The
Creamer scale [77] was used for the SCE values of the
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individual amino acids. DISOPRED scores were calcu-
lated using DISOPRED?2 [78] with a 5% false positive
rate. Mean exposed SCE was calculated as the mean for
all residues predicted to be exposed, while all calculations
based on secondary structure class used total chain
length as the denominator.

Statistical methods

Logistic regressions were performed in STATA (Stata-
corp, College Station, TX) with significance determined
from Z-scores for individual variables and chi-squared
distributions for multi-parameter models. For each of the
three outcome variables (expression, solubility, and
usability), single logistic regressions were run to evaluate
potential correlations between the outcome variable and
the 72 input variables calculated from the protein
sequence. Proportional odds ordinal logistic regressions
were used for expression and solubility, and binary logis-
tic regression for usability [53]. In binary logistic regres-
sion, the probability of a positive outcome is given by the
function Pr(Y = 1) = e %/(1+e?), where 0 is the linear
combination of predictive variable values and their
slopes. For ordinal logistic regression, the probability that
the outcome is less than or equal to a value j is given by
the function P(Y<j) = eY"")/(1+eY"®, with the added
parameter tj, a threshold value for each value of the out-
come variable. Among the three variables for each amino
acid (total fraction, predicted buried fraction, and pre-
dicted exposed fraction), the buried/exposed variables
were used if they had opposite-signed slopes in single
logistic regressions, otherwise the total fraction was used.
For charge variables, the more significant of the whole or
fractional versions of each variable was kept. All variables
which were not significant at the Bonferroni-adjusted p-
value of 0.00069 (0.05/72) were dropped. Combined
models were built by stepwise forward/reverse logistic
regression with p-value cutoffs of 0.05 for removal and
0.049 for addition. Each variable in the resulting model
was individually removed to check for improvement in
Akaike’s Information Criterion (AIC) [79]. Any variable
whose removal improved the AIC was discarded from
the model. Counting-statistics-based 95% confidence
intervals were calculated using Bayesian maximum likeli-
hood estimates of the binomial distribution.

Additional material

Additional file 1: Supplemental Information. Additional file 1 includes
Supplemental Figures and Tables as referenced in the text, in addition to
Supplemental Methods relating to crystallization and NMR solution-
structure determination. Supplemental Text describes in greater detail
the analysis of permissive vs. enhancing factors and the prediction of
successful NMR solution-structure determination [83-871.
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