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Abstract

Deep sequencing harnesses the high throughput nature of next generation sequencing technologies to generate
population samples, treating information contained in individual reads as meaningful. Here, we review applications
of deep sequencing to pathogen evolution. Pioneering deep sequencing studies from the virology literature are
discussed, such as whole genome Roche-454 sequencing analyses of the dynamics of the rapidly mutating
pathogens hepatitis C virus and HIV. Extension of the deep sequencing approach to bacterial populations is then
discussed, including the impacts of emerging sequencing technologies. While it is clear that deep sequencing has
unprecedented potential for assessing the genetic structure and evolutionary history of pathogen populations,
bioinformatic challenges remain. We summarise current approaches to overcoming these challenges, in particular

haplotypes from short reads.

Bioinformatics, Haplotype reconstruction, Statistical errors

methods for detecting low frequency variants in the context of sequencing error and reconstructing individual
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Introduction

Next generation DNA sequencing (NGS) is characterised
by extremely parallel, cost efficient sequencing of gen-
omic fragments, generating hundreds of thousands to
hundreds of millions of short ‘reads’ in a single run [1].
This has opened up new possibilities in the study of
pathogen evolution, allowing researchers to use ‘deep se-
quencing’ to track genomic changes over time. NGS has
many useful applications, ranging from measuring gene
expression levels [2,3], to discovering rare viruses [4] or
metagenomically profiling communities [5,6]. However
for the purposes of this review, we limit our scope to ap-
plications of NGS where aligned reads are considered to
be a population sample. In this definition of deep se-
quencing, reads aligning to a given genomic position are
each assumed to originate from an individual replicon,
revealing a snapshot of the population’s genetic diversity.
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Deep sequencing studies typically feature a depth of sev-
eral hundred to several thousand reads at any given pos-
ition, with the information contained within individual
reads being treated as meaningful. This differs from rese-
quencing projects, where genomic sequences are generated
from the consensus of all aligned reads at any given pos-
ition, and then used for comparative analysis with other ge-
nomes. Resequencing projects rarely exceed a read depth of
around 100x, with excess depth being used to correct for
sequencing errors [7]. For haploid genomes this ensures a
correct estimate of the consensus sequence, as long as se-
quencing errors occur in less than 50% of reads at any pos-
ition. This is in contrast to the deep sequencing approach,
where variants with extremely low population frequencies
(under 1%) may be of interest. As current NGS technolo-
gies have error rates within this order of magnitude, distin-
guishing true variants from errors is a key challenge of
deep sequencing projects.

In this review, we first highlight current applications of
deep sequencing to viral pathogens. Extension of the deep
sequencing approach to bacterial populations is then con-
sidered, including unique bioinformatic challenges and the
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implications of emerging sequencing technologies. The sec-
ond half of our review provides a detailed discussion of
sources of errors in deep sequencing and ways of minimis-
ing their impacts, including computational approaches to
identifying variants within the context of sequencing errors.

Applications of deep sequencing

Viruses

Virology has pioneered the deep sequencing approach,
serendipitously combining the small genome size and
fast evolution of viruses with the extremely parallel na-
ture of NGS. This has led to the development of novel
data analysis algorithms and pipelines, as well as signifi-
cantly advancing our understanding of viral pathogens.

Table 1 describes a selection of viral deep sequencing
studies, illustrating a variety of applications and ap-
proaches. In particular, deep sequencing has transformed
the study of rapidly mutating RNA viruses, such as the
human pathogens human immunodeficiency virus (HIV)
and hepatitis C virus (HCV). These viruses experience
error prone genome replication due to a lack of proof-
reading capacity, thus generating great diversity com-
pared to other viral pathogens even within a single
infection [8,9]. Deep sequencing is proving invaluable
for studying this diversity and its evolutionary and clin-
ical consequences.

As an example, deep sequencing has been used to
comprehensively characterise within-host evolution of
HCV during the early acute phase of infection. This has
shown that transmission of virions to a new host repre-
sents a genetic bottleneck, with four or fewer viral vari-
ants successfully initiating new infections [18]. Bull et al.
extended this approach by phylogenetically analysing
longitudinal whole genome HCV deep sequencing data.
This study demonstrated that acute infection is also
characterised by a second genetic bottleneck, which oc-
curs at 100 days post infection, regardless of infection
outcome (either viral clearance and recovery, or chronic
infection characterised by emergence of a new viral vari-
ant) [14]. Longitudinal whole genome deep sequencing
has also been used to characterise acute HIV-1 infec-
tions. For example, deep sequencing was applied to de-
tect the rapid emergence of low frequency ‘escape’
variants, arising as adaptations to host CD8+ T-cell re-
sponses [11].

This ability to detect low frequency variants is an import-
ant feature of deep sequencing, for example in the context
of drug resistance. Prior to the advent of deep sequencing,
screening for resistance to antiviral drugs typically involved
amplifying and sequencing a single PCR product from a
population of viral particles in a plasma sample, followed
by manually scanning the chromatogram for minor peaks.
This method has a detection threshold corresponding to a
variant population frequency of around 20% [19]. Recently,
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deep sequencing has been shown to allow the detection of
protease inhibitor resistance mutations in HIV with popula-
tion frequencies < 1% [20]. Several other studies have used
deep sequencing to detect low frequency drug resistance
mutations in hepatitis B virus (HBV) [21], HCV [22], and
influenza virus [9].

In addition to providing insights into within-host evo-
lution, deep sequencing of samples from populations of
infected individuals can be used epidemiologically to dis-
sect transmission events. For example, a recent deep
sequencing study demonstrated HCV transmission be-
tween injecting drug users in Mexico [12], while a
detailed deep sequencing analysis of norovirus transmis-
sion within a household showed that rare variants may
survive transmission, with chronic infections providing a
reservoir of new viral variants [23].

Bacteria

To date, NGS of bacterial pathogens has focussed largely
on resequencing of individual isolates, rather than deep
sequencing of populations. For example Saunders et al.
followed within-host evolution of Mycobacterium tuber-
culosis by sequencing isolates collected from a patient
undergoing treatment over a period of 12 months [24].
Only two point mutations were found, occurring se-
quentially and conferring resistance to isoniazid and ri-
fampicin, respectively. The authors argue that the
conspicuous lack of other mutations implies a low per
base mutation rate. However, resequencing of isolates
only allows identification of mutations that have or are
close to reaching fixation. It is therefore unsurprising
that the identified mutations confer antibiotic resistance,
most likely arising due to selective sweeps induced by
the treatment regime. A deep sequencing analysis of the
full mutation spectrum within each isolate has the po-
tential to give a more complete view of the evolutionary
dynamics of the infecting population.

A recent study of Staphylococcus aureus dynamics
used an approach of individual colony sequencing, per-
forming whole genome resequencing of multiple col-
onies derived from individual isolates [25]. Isolates were
harvested at several time points, for two nasal carriers
and one patient who progressed from nasal carriage to
fatal bloodstream infection. Whilst not using individual
reads as a population sample, this study embodies many
of the concepts behind deep sequencing. By phylogenet-
ically analysing the pattern of identified variants, the
evolutionary history of infection was reconstructed.

Resequencing a selection of colonies from individual
isolates cannot, however, match the sample depth ob-
tained through deep sequencing a population. Sequen-
cing of populations, on the other hand, has the
drawback that unless variants co-occur within a read
length or read pair, it is difficult to reconstruct individual



Table 1 Representative examples of deep sequencing applied to viral populations

Pathogen Design Technology Ref seq Filter Align SNV Hap Application Reference
HIV RT-PCR, nested PCR of Roche-454  Sanger In-house software: GS In house scripts, manual Individual reads  Longitudinal emergence [10]
pol fragment GS-FLX sequenced pol removes reads with  amplicon inspection: remove gaps, remove (40 bp region  of drug resistance

amplicon gene ambiguous bases, software reads with frameshift indels or of interest) during treatment failure
sequencing < 80% similarity to (Roche, stop codons, remove variants
reference, or outside  Penzberg, only contained in reads in one
region of interest Germany),  direction, positional variant cut-off
Needleman- values based on control
Wunsch sequences
HIV RT, PCR amplificatin of Roche-454  De novo NS Mosaik RC454 / V-Phaser V-Phaser (one Longitudinal emergence [11]
4 fragments (3.5 kb GS-FLX assembled read length of CD8+ T cell escape
each). Full genome Titanium reference using only) variants, viral adaptation
analysis AssembleViral454
v1.0
HCV RT, PCR amplification ~ Roche-454 358 HCV HVR-1 Flow clustering as MAFFT NA Individual reads Identification of a [12]
of HVR-1, nested PCR  GS-FLX Ti-  representative se- implemented in (multiple transmission event
using sequencing tanium quences from Los QIIME, only reads sequence
adapters amplicon Alamos National  covering entire alignment)
sequencing  Laboratory HCV region of interest
HCV Whole-genome library  Illumina GA 970 reference Primer stripping BWA 059-  Samtools (0.1.16) NA PCR-free whole genome  [13]
prep direct from RNA  IIx 76 bp HCV sequences using CLC Genomics 116 HCV sequencing from
isolated from human single end registered at the ~ Workbench (4.6), human serum; variant
serum, using MRNA- reads Hepatitis Virus remove reads comparison between
seq sample prep kit Database server  aligning to human treatment naive and
(Illumina, San Diego, genome, removal of treatment experienced
CA) duplicate reads patients
HCV RT-PCR using Roche-454  Sanger- In house software Mosaik ShoRAH, manual cleaning ShoRAH (up to  Within-host evolution/ [14]
genotype specific GS-FLX sequenced (discard reads with 1600 bp genetic bottleneck
primers, nested PCR of  Titanium consensus Phred quality scores reconstructions)
full genome, followed below 20 or length
by random shearing <55nt)
and library preparation
HRV Duplicate whole- lllumina GA  Sanger- lllumina software: MAQ v0.7.1  In house scripts; cut-off based on  NA Within-host evolution [15]
genome RT-PCR of [1x sequenced RTA SCS.2.6 and statistical analyses of base fre- during
overlapping primer . consensus CASAVA 16 quencies along reference. Com- immunosuppression
pairs, nebulisation of 76 bp single parison between replicates.
pooled fragments and end reads
library prep
Dengue RT, PCR amplification ~ Roche-454  De novo NS Mosaik RC454/ V-Phaser. Manual removal  NA Intra-host viral diversity — [16]
of four different GS-FLX assembled using of variants in primer binding sites
fragments, random Titanium AV454 with or only in ends of reads
shearing and adapter manual finishing
ligation
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Table 1 Representative examples of deep sequencing applied to viral populations (Continued)

Poliovirus  RT-PCR and nested Roche-454  Known amplicon  Proprietary Roche/ NS Custom made scripts — disregard ~ NA Detection of emerging  [17]
PCR of target FLX sequences lllumina software. In variants with strand bias, as well resistant variants in a
amplicon, followed by  Titanium house software as insertions and deletions vaccine stock
random shearing and  and Illumina (discard reads with adjacent to homopolymers for
library preparation GA lix 76 bp Phred quality scores Roche-454 data.

single end below 20).
reads

Details of the experimental design and analysis pipeline for various applications of deep sequencing to different viruses are given. ‘Design’ describes the types of samples used and any sample processing up to library
preparation. ‘Technology’ indicates the type of sequencing employed. ‘Filter’ details any pre-alignment read processing steps. ‘Ref. Seq.’ describes what kinds of reference sequences were used for read alignment, while
‘Align’ gives the actual alignment software used. ‘SNV' and ‘Hap." indicate software used for SNV detection and haplotype reconstruction respectively. ‘Application’ describes the biological motivation for the study. ‘NS’
indicates the method was not specified in the cited publication, while ‘NA" means not attempted.
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haplotypes and perform phylogenetic analysis. A lack of
physical linkage of variants within reads is more prob-
lematic for bacteria than viruses, due to their relatively
larger genome size, smaller per base mutation rates, and
slower rates of evolution. However, NGS reads are con-
tinuously increasing in length (Roche-454 read lengths
are now approaching 700 nt, while Pacific Biosciences
RS reads may be up to 15000 nt) (Table 2), making re-
construction of individual bacterial haplotypes from
deep sequencing data realistic in the near future.

In a move towards deep sequencing, early studies have
attempted to use individual sequencing reads to reveal
the structure of bacterial populations. In a 2008 study of
an acid mine drainage biofilm, Tyson et al. were able to
reconstruct several Leptospirillum group II substrains
[34]. Although this analysis was facilitated by the use of
relatively long (~700 nt), low error, paired end Sanger
sequenced reads obtained from a shotgun plasmid
library, some modern NGS technologies already have
similar features (Table 2). In fact, a study using Roche-
454 sequencing to longitudinally investigate gut micro-
biota during the first three weeks of a premature infant’s
life was able to reconstruct two closely related Citrobac-
ter UC1CIT strains [35]. Comparative genomic analyses
of these two strains highlighted regulatory, metabolic,
and host interaction traits as possible drivers of early
ecological differentiation.

The acid mine drainage and gut microbiota projects
presented above featured a read depth of only 20x and
13x, respectively (i.e. a relative low depth sequencing ef-
fort). Due to the limited read depth of these studies, fast
read alignment was not critical. However, while rapid

Table 2 Sequencing technologies, features and errors
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algorithms for short read alignment have been devel-
oped, alignment of longer NGS reads currently repre-
sents a bottleneck, requiring faster algorithms [36]. Also,
in the acid mine drainage and gut microbiota studies
[35] much of the sub-strain demarcation was performed
manually. Although work has been done on automating
the analysis of deep sequencing data for viral popula-
tions, the larger genome size and lower levels of diversity
for bacteria will require the development of novel algo-
rithms. Interesting recent developments include pro-
grams to calculate the scaled mutation rate and the
recombination rate of bacterial populations from the in-
formation contained in individual sequencing reads
[37,38]. To the best of our knowledge, however, these
programs have only been used on data with read depths
of under 100x. Approaches developed for the analyses of
deep sequencing data from cancer samples may prove
useful for bacterial populations, as the evolution of can-
cer and the within-host evolution of bacterial pathogens
share many features, including expanding, asexually re-
producing clonal population structures, and the propen-
sity for drug resistance [39]. For instance, the matched
samples approach discussed below could be readily ap-
plied to longitudinal bacterial samples.

Very recently, two studies have used NGS deep
sequencing on the level of entire bacterial populations
(see Table 3). Firstly, deep sequencing was used for the
sensitive detection of drug resistance mutations in bac-
teria, similar to what has already been performed for vi-
ruses (see above). Daum et al. employed the Ion Torrent
platform to characterise five full length Mycobacterium
tuberculosis genes (cumulatively sequencing 11.4 kb per

Platform Manufacturer Throughput (per machine run) Reported errors Depth Depth Reference
(virus) (bacteria)

454 GS Junior Roche ~135 K reads @ ~520 nt ~0.38% indels 7K 14 [26]

GS-FLX Titanium  Roche ~1 M reads @ ~500 nt ~0.28% indels; ~0.12% substitution 50 K 100 271
(max 1.07%)

MiSeq [llumina ~ 11 M reads @ ~ 150 nt < 0.001% indels, ~0.1% substitutions 165 K 330 [26]

GA lIx lllumina ~ 640 M reads @ 100 nt ~0.001% indels; ~0.31% substitutions 6 M 13K [27]
(max ~5.85%)

HiSeq 2000 lllumina ~ 6G reads @ 100 nt ~0.002% indels; ~0.32% substitutions 60 M 120 K *
(max ~8.2%)

lon Torrent PGM  Life technologies ~ ~2 M reads @ ~121 nt ~1.5% indels 24 K 48 [26]

SOLID Life technologies ~ ~120 M reads @ ~50 nt ~0.09% substitutions (max > 5%) 600K 1K [28,29]

RS Pacific biosystems ~ ~200 K reads @ ~2000 nt ~14% indels, ~1% substitutions 40 K 80 [30,31]

(max > 15000 nt)
tSMS Helicos ~1G reads @ 35 nt ~3% indels, ~0.2% substitutions 3M 7K [32]

Indels errors are largely associated with homopolymers for Roche and lon Torrent. This fact can have a significant impact on the detection of variants associated
with homopolymers, as was recently shown for the 2184delA mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) using lon Torrent PGM
[33]. Sequencing errors are also highly dependent on the sequencing context and thus can influence variant calling in a biased, but potentially predictable way.
For example, certain GC-rich motifs have been reported to have substitution errors of close to 6% [27] for the Illumina sequencing technology. Depth columns

give anticipated read depth for a typical viral (~10 K) or bacterial (~5 M) genome.
*Calculated for this review from control PhiX data using GemSIM v1.6 [27].
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Table 3 Studies applying deep sequencing to within-population bacterial variation

Pathogen Design Technology Ref Filter Align SNV Hap Application Reference
seq
M. tuber-  Chemical shearing of pooled lon Torrent NS NS NS NS NA  Detection [40]
culosis PCR-amplified target genes 314 PGM, of low-
(rpoB, katG, pncA, gyrA, rrs) generating frequency
for each isolate, followed by  60-70 bp drug
adapter ligation, barcoding,  reads at resistance
PCR amplification, and li- 300-500% mutations
brary preparation
S.aureus  Extraction of genomic DNA  SOLID 3 S. SOCS SOCS Detect and filter using NA  Genome [41]
followed by whole genome  plus, 2 times aureus  package: package SOCS package (min. av. evolution
standard SOLID mate-pair li- 50 bp reads SA957  quality qual 20, 500 < read depth
brary construction, with 3 kb at ~5000x threshold of < 15000, apply Bernoulli

fragment size Q15 and test (p <0.001) to
trimming to remaining SNVs
42 bp

Details of the experimental design and analysis pipeline for the two examples of deep sequencing applied to bacterial populations identified in this review.
‘Design’ describes the types of samples used and any sample processing up to library preparation. ‘Technology’ indicates the type of sequencing employed. ‘Filter’
details any pre-alignment read processing steps. ‘Ref. Seq.’ describes what kinds of reference sequences were used for read alignment, while ‘Align’ gives the ac-
tual alignment software used. ‘SNV’ and ‘Hap.’ indicate software used for SNV detection and haplotype reconstruction respectively. ‘Application’ describes the bio-
logical motivation for the study. ‘NS’ indicates the method was not specified in the cited publication, while ‘NA" means not attempted.

isolate to a depth of 300-500x), in order to determine
drug resistance in MDR and XDR strains and to discover
heterogeneous or mixed strain genetic populations
within isolates [40].

Secondly, a recent paper used deep sequencing to in-
vestigate mutations arising in a Staphylococcus aureus
SA957 strain culture grown in Luria-Bertani broth and
harvested during the late logarithmic growth phase.
Whole genome deep sequencing (median depth of over
5,000x) combined with phylogenetic inference of ances-
tral sequences revealed that patterns of mutations were
completely different from those obtained by standard
comparison of closely related S. aureus strains [41]. For
instance, there were significant differences in the distri-
bution of both coding and non-coding SNVs, as well as
in the location and frequency of indels. This finding
questions the assumption that comparing the consensus
genomes of individual strains is a good proxy for study-
ing short term evolution. It also proves that deep se-
quencing of bacterial populations is technically possible,
and has the power to reveal important aspects of bacter-
ial evolution that may previously have been missed by
shallow sequencing of individual strains or isolates.

Sources of error in deep sequencing

The examples highlighted above demonstrate that deep
sequencing is a powerful tool for investigating evolving
viral and bacterial populations, facilitating elucidation of
evolutionary dynamics, detection of drug resistance and
immune escape mutations, and characterisation of trans-
mission networks. Key to all of these applications is the
accurate identification of genetic variants. At its most
basic level, this means accurately quantifying the popula-
tion frequency of individual point mutations, otherwise
known as single nucleotide variants (SNVs). Some

applications, for instance phylogenetic analysis, also re-
quire the pattern of co-occurrence of SNVs within sub-
sets of the population to be determined; either by simply
considering physical linkage of SNVs within individual
reads, or by using overlapping reads to reconstruct lon-
ger genome fragments, termed ‘haplotypes’. The accur-
acy of both SNV detection and haplotype reconstruction
is jeopardised by errors occurring during deep
sequencing.

Errors may occur at any of the many steps involved in
deep sequencing an evolving pathogen population, in-
cluding during DNA or RNA extraction; reverse tran-
scription for RNA viruses; PCR amplification of target
regions; library preparation and sequencing; read quality
control and filtering; de novo assembly, consensus call-
ing, and alignment; variant calling and haplotype recon-
struction; and further downstream analysis of results
(Figure 1). The following sections discuss sources of
error during the various steps in a deep sequencing
pipeline, and ways of minimising these errors through
careful experimental design and data analysis. Our dis-
cussion is mainly limited to NGS data produced by the
Roche-454 and Illumina platforms. These have been the
most popular technologies for deep sequencing in recent
times; their errors are well understood and methods to
correct such errors have been developed. However, we
believe many of the general insights into sequencing er-
rors, and bioinformatic solutions for dealing with them,
will also be broadly applicable to emerging technologies.

Sample collection and PCR errors

Firstly, genomic material must be obtained from the
sample. For heterogeneous community samples (meta-
genomes), choice of DNA extraction method can signifi-
cantly affect the representation of individual members
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Genomic material extraction

* From population of viral particles or bacterial cells
 E.g. harvested from serum or sputum samples
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nested PCR
Reverse transcription PCR
* Total RNA, or | ° Of target region (amplicon), or:
 Target region via RT-PCR “’| = Overlapping fragments (whole genome)
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Amplicons Whole genomes
» Adapters / sequencing primers annealed to ends of * Short, random fragments made by shearing or
PCR amplified target regions nebulisation
 Hybrid primers including adapters may also be used » Either from PCR-amplified or raw genomic material
during earlier target amplification steps * Adapters / primers annealed to fragment ends
Sequencin

* Roche-454: longer but fewer reads. Good for haplotypes
* lllumina: many but shorter reads. Good for low-freq. SNVs

v

Read filtering / preprocessing

* Remove reads with 'N's', low quality, PCR duplicates
* Remove adapter sequences
» Performed with custom software or during alignment

iterative
consensus

Read assembly Read alignment
* Generates de novo reference * Either multiple sequence alignment, or:

 Alignment to reference sequence
* References(s): published, de novo assembled,
sanger sequenced, or alignment consensus

v

SNV / haplotype calling

« Filters e.g. quality score, position within read, coverage
» Statistical tests / clustering
¢ Manual inspection

Downstream analyses

* Assess diversity (SNVs), phylogenetics (haplotypes)
* Find resistance mutations, genes under selection, etc.

Figure 1 (See legend on next page.)
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(See figure on previous page.)

Figure 1 Flowchart detailing pipeline steps required for deep sequencing projects. After extracting genomic material, PCR amplification
may be required prior to library preparation. For sequencing of a target region (‘amplicon sequencing’), multiple, ‘nested’ PCR rounds may be
performed. Sequencing adapters and primers may be included in the primer for the final round, or may be annealed to the ends of fragments
after amplification. For whole genome sequencing, multiple, overlapping PCR products are randomly sheared before annealing of sequencing
adapters and primers. Alternatively, if sufficient genomic material is available, shearing and annealing may be performed directly without PCR
amplification. If sequencing RNA, RT must be performed before library preparation. For amplicon sequencing, this may take the form of an initial
RT-PCR. Choice of sequencing technology is dependent on the project’s aims: for instance, the longer reads of Roche-454 may be more
appropriate for reconstructing haplotypes, while the high data volume afforded by lllumina is more suitable for detecting very low frequency
SNVs. After sequencing, reads must be aligned, either via multiple sequence alignment or to a reference. Choice of reference is critical; if available,
a published reference or references may be used; alternatively, a consensus sequence may be used, generated through de novo assembly, or by
alignment to a published reference followed by replacement of fixed variants, or by Sanger sequencing the same sample as submitted for deep

downstream analysis.

sequencing. Following alignment, a number of bioinformatic tools are available for SNV calling, haplotype reconstruction, and

[42,43]. Fortunately, this is likely to be less problematic
for deep sequencing of single species populations, which
generally consist of closely related individuals that will
have similar properties with respect to cell lysis and re-
lease of genomic material. However, particularly in the
case of viruses with low titres or sample amount, nucleic
acid yield may be insufficient, requiring PCR amplifica-
tion prior to sequencing. For whole virus sequencing,
overlapping fragments may be amplified along the length
of the genome, before random shearing and ligation of
sequencing adapters [11,14]. For RNA viruses such as
HCV and HIV, reverse-transcriptase (RT) PCR may be
applied [14,15]. Alternatively, RT may be performed in-
dependently before regular PCR amplification [16]. If
whole genome sequencing is not required, smaller target
regions can be amplified directly or by using multiple,
‘nested’ rounds of PCR. Hybrid primers with integrated
sequencing adapters are often used for the final round
(i.e., ‘amplicon sequencing’) [12].

PCR amplification, either prior to sequencing or dur-
ing library preparation, can introduce both biases and
errors. Differences in primer binding affinities between
templates, and re-sampling of individual templates (i.e.,
‘PCR duplicates’) can result in amplification bias, distort-
ing variant frequencies. Measurement of amplification
bias using uniquely tagged primer sequences to infer the
template of origin of each sequence read found that ob-
served frequencies typically differed by two to 15 fold
compared to true frequencies. In some cases, the bias
was up to 100 fold [44]. Chimeras can also form during
the PCR reaction, leading to the artificial creation of
non-existent templates. In a deep sequencing analysis of
a mixture of HIV clones, the estimated PCR chimera
rate was 1.9% [45]. Estimates of PCR chimera rates from
studies not employing deep sequencing vary from 1% to
5%, depending on the length of elongation time used
[46]. Additionally, the polymerases used during PCR
have their own inherent error rates, introducing mis-
takes that can mimic true variants. A polymerase error
rate of 0.2% has been inferred from the HIV mixture

study described above [45]. Other measures of polymer-
ase error rates range from 107 to 10°° [47].

Even when enough genomic material can be obtained
to allow direct whole genome sequencing, NGS library
preparation typically still involves a PCR step. For both
Roche-454 and Illumina sequencing, DNA is first sub-
jected to random shearing, followed by isolation of suit-
ably sized fragments. During this step, chimeras between
sheared fragments may form. After shearing and frag-
ment size selection, DNA is then ligated to oligonucleo-
tide adapters, which are used to immobilise fragments
and to provide primer binding sites for clonal amplifica-
tion. In this latter step, errors may be introduced due to
PCR amplification. Small sections of adapter sequences
may also be retained in some reads due to adapter medi-
ated recombination, appearing as indels in aligned data
[27].

Sequencing errors

Errors are also introduced during synthesis of actual
DNA sequencing reads. Table 2 gives estimates of error
rates for several NGS platforms. Roche-454 and Illumina
sequencing errors have been studied in some depth. Ori-
ginally, Roche-454 error rates were estimated at 4% for
experimental samples, and 0.6% for test fragments [48].
Margulies et al. explained this discrepancy by suggesting
that in sequencing libraries from experimental samples,
some ‘clonally’ amplified fragments may in fact not be
clonal, originating from two or more fragments and
thereby inflating errors [48]. Subsequent versions of
Roche-454 have greatly improved on these error rates,
with, for example, Huse et al. estimating error rates for
the GS20 sequencer at 0.49% for experimental data, and
at an even lower 0.1% for test fragments [49]. Roche-454
test fragments do not undergo library preparation or
PCR amplification before sequencing, explaining their
lower error rates. In fact, one study used this feature of
Roche-454 test fragments to perform an in depth ana-
lysis of errors occurring during actual read synthesis on
the GS-FLX Titanium platform [50]. Error rates were
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found to be highly heterogeneous, with an average error
rate of 1.07% and a local maximum error rate of over
50% in some cases [50]. The presence of homopolymers,
sequence position, read length, and spatial location
within the PicoTitre plate were identified as factors in-
fluencing local error rates [50]. Indel errors associated
with homopolymers are widely recognised as the main
source of error in Roche-454 sequencing and there is
emerging evidence that Ion Torrent sequencing also suf-
fers from the same type of errors [33]. Indel errors can
have a significant impact on the detection of variants as-
sociated with homopolymers, as was recently shown in
Ion Torrent PGM screening for cystic fibrosis trans-
membrane conductance regulator (CFTR) mutations.
The 2184delA mutation, located within a 7 bp homopol-
ymer, was the only studied mutation not able to be reli-
ably detected [33].

Error rates are also known to be heterogeneous for Illu-
mina sequencing. Local sequence context, including GGC
sequences, inverted repeats, and homopolymers are all
known to inflate downstream error rates [27,51]. For ex-
ample, GC-rich motives have been reported to suffer from
substitution error rates close to 6% [27]. Folding of single
stranded DNA, and sequence specific effects on the activity
of DNA polymerase (e.g. slippage or stalling), have been
proposed as underlying mechanisms [51]. Average error
rates have been estimated at between 0.31% and 1.66%,
varying between individual sequencing runs [52], even
when performed on the same machine [27]. Error rates also
increase along the length of a read, in some cases being ten
fold higher at the 3’ end than the 5" end [52]. Roche-454
error rates have also been observed to increase slightly
along the length of a read [27]. In fact, the higher error rate
reported for GS-FLX Titanium platform reads (~350 nt)
compared to GS20 reads (~150 nt) can be explained by a
higher error rate towards the end of longer reads. This is
further illustrated by the fact that for GS-FLX Titanium
reads, the error rate for experimental data fell to 0.53%
when only the first 101 nucleotides of a read were consid-
ered [50].

Alignment errors

Alignment of sequencing reads can itself introduce bias
and errors. Aligning to a known reference can be attract-
ive when the aim of a study is to compare samples, as,
for example, in the longitudinal analysis of within-host
HCV evolution [14]. However, use of an inappropriate
(i.e. too distantly related) reference can lead to spurious
alignment or alignment failure. One way to overcome
this issue is to generate a consensus sequence. This may
be done either through iterative alignment to a pub-
lished reference, with replacement of any fixed SN'Vs be-
tween rounds, or by Sanger sequencing the same sample
as used for deep sequencing, as in [10] (only possible for
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small genomes or amplicons). Even still, if subsets of the
sequenced population diverge too much from the con-
sensus sequence, reads originating from these sub-
populations may not align, thus biasing results. Choice
of alignment algorithm is critical in overcoming this
problem and needs to be carefully considered. For in-
stance, the original version of the Bowtie algorithm [53]
did not allow for alignment with gaps. For reads with
homopolymer errors, this results in either alignment fail-
ure or long stretches of mismatches. As another ex-
ample, SOAP2 does not allow more than two
mismatches in aligned reads [54]. Under this condition,
data from rapidly evolving viruses such as HIV or HCYV,
or long reads where more than two errors are expected,
may not align.

Haplotype reconstruction errors

Haplotype reconstruction involves both collapsing indi-
vidual, error prone reads into their source haplotypes,
and assembling longer genomic segments from these
short, overlapping read-length haplotypes. The amplifi-
cation bias and chimera errors discussed above nega-
tively impact the accuracy of reconstructing read-length
haplotypes. When reconstructing longer haplotypes
through assembly, in silico chimeras may also be artifi-
cially generated. For instance, the program ShoRAH has
been shown to reconstruct read-length haplotypes with
population frequencies as low as 0.1% in control data
[45]. When the reconstruction of longer haplotypes was
attempted on real HCV data, the comparison with
cloned haplotype sequences demonstrated a detection
limit of > 2.5% due to the formation of low frequency in
silico chimeras [14]. In silico chimeras can occur when
multiple connecting paths through the overlapping read
length haplotypes are possible. Single nucleotide errors
(point errors) can confound this problem, by creating
misleading paths, leading to more chimeras and also in-
flating the number of non-chimeric haplotypes identi-
fied. In deep sequencing studies of pathogen evolution,
these problems complicate both recombination detec-
tion and phylogenetic analysis of haplotypes, and also in-
flate diversity estimates.

Overcoming errors

Sample collection and PCR

While sample collection and PCR biases may be difficult to
eliminate, they are often systematic, which at least for com-
parative analyses may limit their impact provided experi-
ments are appropriately designed. For DNA extraction, it
has been shown that technical replicates of the same
method vary less than different extraction methods, even
when performed by different experimenters on different
days [43]. The best way to reduce PCR biases is to limit the
use of PCR. Emerging single molecule sequencing
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technologies, such as Pacific Bioscience’s RS [31] platform
and Oxford Nanopore Techonolgies’ GridION, have great
potential here as they don’t employ PCR [55]. The RS plat-
form involves immobilising individual DNA molecules at
the bottom of ‘zero mode waveguide’ (ZMW) structures.
Each ZMW acts as a miniature light microscope, recording
the incorporation of individual fluorescently labelled nucle-
otides during elongation by a polymerase. With thousands
of ZMWs on each sequencing cell, massively parallel single
molecule sequencing is achieved. Oxford Nanopore Tech-
nologies take a different approach; a voltage is applied
across an electrically resistant membrane with an embed-
ded nanopore, causing individual DNA or RNA molecules
to pass through the nanopore. As the molecules pass, indi-
vidual nucleotides make characteristic disturbances to the
current across the nanopore, allowing the sequence to be
deduced. Sensor chips record from multiple nanopores
simultaneously, facilitating parallel single molecule sequen-
cing. Although single molecule sequencing may represent
the future of deep sequencing, its usefulness in population
genomics cannot currently be fully assessed. GridION is
not yet commercially available and hence has not received
independent error evaluation, and RS still has reported
error rates in excess of 15% [30,31], which will substantially
reduce the accuracy and sensitivity of variant calling. In-
novative experimental designs, including for instance circu-
lar sequencing where the same DNA molecule is
sequenced multiple times to generate a single sequence
consensus [56], may help overcome these high error rates
and thus improve the usefulness of single molecule sequen-
cing for population studies.

In a novel approach, PCR free Illumina based HCV deep
sequencing was achieved by sequencing the total RNA ex-
tracted from human serum samples and then discarding
any reads aligning to the human genome before analysing
the remaining reads. This approach achieved an average
read depth of more than 50x, covering more than 99% of
the HCV genome [13]. Greater depth using similar ap-
proaches could now be achieved with the Illumina HiSeq
platform (Table 2), as recently proposed for direct RNA se-
quencing of HIV and other RNA viruses [57]. Although bias
may still be introduced during the preparation of RNA
samples, direct sequencing eliminates biases and errors in-
troduced during the RT step and subsequent PCR amplifi-
cation, providing a more accurate population sample,
especially for low frequency variants.

PCR free sequencing is often not possible, however.
The approach discussed above relies on very high vol-
ume data; for applications requiring Roche-454s super-
ior read length, the generation of the required amount
of data may be prohibitively expensive (less data is pro-
duced overall by Roche-454 sequencing compared to
[llumina sequencing, despite its longer read length
(Table 2)). PCR amplification biases appear to be fairly
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reproducible for a specific primer pair [58]. Therefore, if
the aim of a study is to compare samples, the effects of
bias may be minimised through consistent experimental
design. Alternatively, if PCR bias is likely to have a sig-
nificant and unavoidable impact on data interpretation,
biases may be accounted for using a primer tag system
as demonstrated in a deep sequencing analysis of the
HIV-1 protease gene [44]. In this study, random tags
unique to individual primers were integrated in the
primers of the first amplification round. This meant that
even though PCR biases occurred, the fragment from
which each sequenced product originated could be
tracked, allowing bias to be both measured and
accounted for before estimation of variant frequencies.

Read filtering and alignment
Filtering reads prior to or during alignment is often per-
formed in an attempt to reduce sequencing errors. By
simply removing reads containing unspecified nucleo-
tides from GS20 data, the average error rate was reduced
from 4.7% to 0.24% [49]. Various programs are available
for assessing read quality and filtering reads, for example
BIGpre [59] and AmpliconNoise [60]. These tools also
contain algorithms for removing PCR duplicates. The
advantage obtained by filtering may vary with individual
data set and sequencing platform. For example, one
study found that 82% of Roche GS20 reads contained no
errors, while for the Roche-454 GS-FLX platforms, only
10.09% of reads were without errors [49]. For Roche-454
GS-FLX datasets the reduction in error achieved
through filtering of reads may be small compared to the
cost in terms of coverage and depth. The impact on
depth can be minimised by only trimming the error
prone ends of reads, although this will reduce average
read length. For instance, programs such as ConDeTri
[61] and SolexaQA [62] trim the 3" end of Illumina
reads according to quality scores assigned to individual
bases. Trimming may also be used to remove adapter se-
quences, for instance as implemented in the alignment
program Novoalign (http://www.novocraft.com/).
Alignment biases can be easily detected by considering
the proportion of aligned reads. For example, if a sub-
stantial fraction of reads remain unaligned, or the pro-
portion of aligned reads varies between samples, then a
different approach to alignment should be considered. A
way forward is to align to a collection of related refer-
ences, for instance from a public sequence database of a
species [12]. Assembling the reference de novo before
aligning reads back to the new reference(s), as in [11],
may also help overcome these issues. While this is argu-
ably the most accurate strategy, it can limit comparison
between samples as each experiment or sample may end
up with a unique reference sequence. Finally, both as-
sembly and alignment are error prone, and the ‘best’


http://www.novocraft.com/

McElroy et al. Microbial Informatics and Experimentation 2014, 4:1
http://www.microbialinformaticsj.com/content/4/1/1

alignment chosen by an alignment program is not neces-
sarily the ‘true’ alignment. Appropriate approaches and
choice of assembly and alignment software will depend
on the individual data set, experimental design, and aims
(see [36,63] for a review and assessment of alignment
software and algorithms). Alignment quality should also
be inspected manually in a visualisation program such as
Tablet [64].

SNV detection and haplotype reconstruction
Whether the aim is simply to generate a list of SNVs, or
to perform in an depth analysis of reconstructed haplo-
types, the culmination of any deep sequencing pipeline
involves identifying variants from aligned reads. Various
programs offer solutions for calling SNVs, employing ei-
ther cut-off based filtering or statistical tests to distin-
guish true variants from errors. Automated filtering of
potential variants based on quality scores is a popular
approach, as implemented in the program VarScan [65].
VarScan uses several criteria, including variant coverage
and average variant base quality, to identify true variants.
This approach assumes that errors within reads have
correspondingly low quality scores. However, this as-
sumption may be invalid in some instances. For ex-
ample, errors occurring during PCR may be ‘correctly’
sequenced with high quality base calls. Also, for Roche-
454 data, quality scores are not a direct per base indica-
tion of error probability, but rather an estimate of the
confidence in the homopolymer length. Thus a genomic
position within a longer homopolymer will generally be
covered by reads with lower quality bases compared to a
genomic position flanked by contrasting bases, inde-
pendent of whether the individual read bases are correct
or not [49]. For Illumina data, quality scores have also
been shown to underestimate true error rates for high
quality bases, and overestimate error rates for low qual-
ity bases [52]. Choosing appropriate cut-offs for quality
score based variant calling is therefore difficult, making
cut-off methods very sensitive to parameter choice [27].
An alternative, quality score independent approach is im-
plemented in the program ShoRAH [45]. ShoRAH is essen-
tially a haplotype reconstruction program; however any
program that results in reconstructed haplotypes with asso-
ciated frequency estimates can be used to call SNVs, by
parsing the reconstructed haplotypes for variant sites (in
fact, a list of SNVs is produced by ShoRAH as part of the
standard output [66]). ShoRAH corrects errors by using
Bayesian clustering to group reads into short haplotypes
[67]. The consensus sequence within a group is then taken
as the truth, with any deviations from the consensus re-
moved as errors. A minimal set of haplotypes required to
explain the error-corrected reads is constructed using parsi-
mony methods, resulting in reconstructed long haplotypes.
ShoRAH has been used to reconstruct long (1000 bp) HCV
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haplotypes from patient isolates, facilitating coalescent
phylogenetic analysis of HCV evolution [14].

The program V-phaser uses a related approach, consider-
ing the ‘phasing’ or co-occurrence of variants within a read
[68]. Additionally, V-phaser recalibrates individual base
quality scores, incorporating both phasing and quality
scores into its model of variant calling. Validation of this
method by deep sequencing an artificial control mixture of
West Nile virus samples demonstrated accurate detection
of SNVs with population frequencies > 0.2% (sensitivity and
specificity > 97%). Another study, employing a combinator-
ial model to reconstruct haplotypes from overlapping reads,
detected 11 true haplotypes from deep sequencing data ori-
ginating from a pooled sample of 12 HBV genomes [69].

Probabilistic methods like the examples given above
assume that errors are random and that true SNVs are
subject to selection and may therefore co-occur within a
haplotype more frequently than is expected by chance.
Under these assumptions, the SNV detection limit via
clustering is a product of the per site error rate, the
SNV frequency, and the number of physically linked
polymorphic sites under consideration. By considering
multiple variant sites within a read at once, increased
statistical power can be achieved (see [66] for a formal
mathematical argument). However, any systematic errors
that co-occur within reads will violate the assumptions
outlined above and behave like polymorphic sites, caus-
ing them to be retained during clustering or phasing
analysis.

Statistical tests incorporating analysis of strand bias
are emerging as one way of accounting for systematic se-
quencing errors [70]. The basic idea behind such tests is
that a systematic error is caused by the upstream se-
quence within a read, and thus should not occur in reads
approaching the position from the opposite direction.
Indeed, a lack of correlation between error rates in for-
ward and reverse reads has been noted [71], prompting
independent analysis of true variant probability in for-
ward and reverse reads [71,72]. Observed strand bias
can also be utilised directly to test the validity of a vari-
ant [66,73]. For example, the latest version of ShoRAH
(http://www.bsse.ethz.ch/cbg/software/shorah) incorpo-
rates a beta-binomial test of strand bias when calling
variants from reconstructed haplotypes, while LoFreq
implements a two tailed Fisher’s exact test. [73] A recent
comparison between several of these variant calling algo-
rithms revealed that for samples where errors are ran-
dom and true diversity is high (i.e. two or more true
SNVs can be expected to occur within an observed read)
probabilistic clustering is a powerful technique allowing
detection of SN'Vs at frequencies lower than the corre-
sponding sequencing error rate. When these conditions
are not met, then a statistical test of strand bias im-
proves the precision of SNV calling [66].
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The systematic nature of sequencing errors is also uti-
lised in the ‘matched samples’ approach. Developed ini-
tially for deep sequencing of cancer cells, matched
control (e.g. normal tissue) and test (e.g. tumor tissue)
samples are sequenced simultaneously, ideally being
multiplexed together to minimise between sample error
profile variability. The error profile of the control sample
is then used to account for errors in the test sample, by
statistically comparing the population frequency of each
potential variant in the two samples [72]. Such an ap-
proach is also feasible for pathogen deep sequencing,
provided suitable controls are available. In fact, a related
approach has been developed directly for viral deep se-
quencing, where multiple reference samples are multi-
plexed together with test samples, and used to calculate
error rates, which then inform a statistical test [71]. This
method performed extremely well, identifying a known
antiviral resistance mutation with a population fre-
quency of just 0.18% in a clinical HINT influenza A
sample [71]. However, matched sample sequencing may
be inaccessible in some cases due to sequencing costs
and the requirement for suitable control samples. Also,
while it can be used successfully in situations where
clustering or phasing approaches may fail (for example,
low diversity populations), for high diversity data it does
not facilitate haplotype reconstruction per se, a distinct
advantage of the clustering or co-occurrence approaches
used by ShoRAH and V-phaser, respectively.

The statistical matched samples methods described
above are essentially empirical; an alternative empirical
method allowing for haploytpe reconstruction and not
requiring a control sample has been implement for
amplicon resequencing. This approach uses two algo-
rithms, k-mer based error correction (KEC) and empir-
ical frequency threshold (ET) [74]. KEC first calculates
the frequency of k-mers for all reads in a data set. A fre-
quency threshold is then estimated, with low frequency
k-mers assumed to be errors. Locations within reads
containing these low frequency k-mers are then sub-
jected to error correction. The ET algorithm is a detailed
multistep process for correction of homopolymers, rely-
ing heavily on accurate pairwise alignment of reads
against a set of known reference sequences and error
threshold estimates. Benchmarking using known ampli-
con sequences suggested these empirical algorithms find
as many true haplotypes as probabilistic clustering, with
fewer false positive haplotypes detected.

As described above, several algorithms have been pro-
posed for haplotype reconstruction, although a bench-
mark comparison between these methods is still lacking
(see also [75] for a review of the current methods for
haplotype reconstruction). Most algorithms involve
some form of local error correction, followed by a clus-
tering or grouping step. In some cases, the option to
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reconstruct long haplotypes by considering overlapping
short haplotypes (or reads) is provided.

Avoiding the formation of chimeras is a key challenge
in haplotype reconstruction, in addition to the error cor-
rection methods discussed above. Chimeras occurring
within a read and resulting from recombination during
library preparation may be minimised by choosing an
amplification protocol with minimal cycle numbers or
stringent amplification conditions. Algorithms for re-
moving PCR chimeras are also in development; for in-
stance, the Perseus algorithm within the program
AmpliconNoise [76] identifies chimeras by harnessing
the fact that both parents of a PCR chimera must have
at least one more amplification round than the chimera.
Pairwise alignments between a read and its possible par-
ents combined with consideration of their individual fre-
quencies are used to flag potential chimeras, which are
then classified using a parsimony informed supervised
learning approach.

The best way to avoid in silico chimeras is to restrict
haplotype analysis to individual read lengths. This will
be increasingly feasible as NGS read lengths improve.
Additionally, reduction in error rates, and improved
methods for error detection and removal (see discussion
on variant calling above) will be of assistance, by redu-
cing misleading paths caused by retained errors, and de-
creasing the effects of false positive SNVs on haplotype
diversity measures.

Finally, independent of the method used for calling
variants, manual inspection of results is standard prac-
tice. For example, Bull et al. excluded viral variants as
errors if manual inspection demonstrated that variants
were only present in the ends of reads, or adjacent to a
homopolymer region [14].

Conclusions and future directions

Deep sequencing has the potential to revolutionise our
understanding of pathogen evolution, providing unpre-
cedented, real time insights into the genetic diversity of
pathogen populations. Through careful experimental de-
sign and the use of appropriate controls, biases and er-
rors can be minimised. Bioinformatic methods for
separating true variants from errors are developing rap-
idly, and already allow detection of variants with popula-
tion frequencies under 1%.

In general, all variant detection approaches dis-
cussed in this review are largely focussed on the
analysis of SNVs. However, indels are also likely to
contribute to pathogen evolution and therefore
methods for their detection in the presence of se-
quencing error should receive urgent attention. Au-
tomated tools for deep sequencing analysis of
bacterial populations are also required. As new se-
quencing technologies continue to emerge, other
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future bioinformatic challenges will include develop-
ing algorithms for aligning very long reads, and
coping with the unique error profiles of each se-
quencing technology.
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